過(guò)橢圓
x2
3
+
y2
2
=1的右焦點(diǎn)F作兩條互相垂直的弦AB,CD,設(shè)AB,CD的中點(diǎn)分別為M,N.
(1)證明:直線MN必過(guò)定點(diǎn),并求此定點(diǎn);
(2)若弦AB,CD的斜率均存在,求△FMN的面積S的最大值.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:圓錐曲線中的最值與范圍問(wèn)題
分析:(1)由題意知F(1,0),當(dāng)弦AB,CD的斜率均存在時(shí),設(shè)AB:y=k(x-1),代入橢圓
x2
3
+
y2
2
=1
,
得(3k2+2)x2-6k2x+(3k2-6)=0,由韋達(dá)定理得M(
3k2
3k2+2
,
-2k
3k2+2
),將點(diǎn)M中的k換成-
1
k
,得到點(diǎn)N(
3
2k2+3
,
2k
2k2+3
),由此得直線MN過(guò)定點(diǎn)(
3
5
,0);當(dāng)弦AB或弦CD的斜率不存在時(shí),直線MN為x軸,過(guò)點(diǎn)(
3
5
,0
),由此能證明直線MN必過(guò)定點(diǎn)E(
3
5
,0).
(2)由(1)知S△FMN=
1
2
|EF|•|yM-yN|
=
|2k(k21)|
(3k2+2)(2k2+3)
,由此利用導(dǎo)數(shù)性質(zhì)能求出△FMN的面積的最大值為
4
25
解答: (1)證明:由題意知F(1,0),
①當(dāng)弦AB,CD的斜率均存在時(shí),設(shè)AB的斜率為k,則CD的斜率為-
1
k
,
設(shè)AB:y=k(x-1),代入橢圓
x2
3
+
y2
2
=1

得(3k2+2)x2-6k2x+(3k2-6)=0,
xM=
xA+xB
2
=
3k2
3k2+2
,yM=k(xM-1)=
-2k
3k2+2
,
∴M(
3k2
3k2+2
-2k
3k2+2
),
將點(diǎn)M中的k換成-
1
k
,得到點(diǎn)N(
3
2k2+3
2k
2k2+3
),
(i)當(dāng)k≠±1時(shí),kMN=
2k
2k2+3
+
2k
3k2+2
3-3k2
=
10k(k2+1)
6-6k4
=
-5k
3k2-3
,
此時(shí)直線MN的方程為y=
2k
2k2+3
=
-5k
3k2-3
(x-
3
2k2+3
),
則直線MN過(guò)定點(diǎn)(
3
5
,0);
(ii)當(dāng)k=±1時(shí),直線MN的方程為x=
3
5
,過(guò)點(diǎn)(
3
5
,0).
②當(dāng)弦AB或弦CD的斜率不存在時(shí),直線MN為x軸,過(guò)點(diǎn)(
3
5
,0
),
綜上知直線MN必過(guò)定點(diǎn)E(
3
5
,0).
(2)由(1)知S△FMN=
1
2
|EF|•|yM-yN|

=
1
5
|
-2k
3k2+2
-
2k
2k2+3
|
=
|2k(k21)|
(3k2+2)(2k2+3)
,
設(shè)k>0,則S′=
-12k6-10k4+10k2+12
(3k2+2)2(2k2+3)2

=
(-12k4+2k2-12)(k2-1)
(3k2+2)2(2k2+3)2
,
∴由S′=0,得k=1,又k∈(0,1)時(shí),S′>0,k∈(1,+∞)時(shí),S′<0,
∴當(dāng)k=1時(shí),S有最大值
4
25

∴△FMN的面積的最大值為
4
25
點(diǎn)評(píng):本題考查直線過(guò)定點(diǎn)的證明,考查定點(diǎn)坐標(biāo)的求法,考查三角形面積的最大值的求法,解題時(shí)要注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知an=2,amn=16,則m的值為( 。
A、3
B、4
C、a3
D、a6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,且過(guò)點(diǎn)(1,
3
2
);圓C2:x2+y2=
12
7

(Ⅰ)求橢圓C1的方程;
(Ⅱ)若直線l與圓C2相切,且交橢圓C1于A,B兩點(diǎn),求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x3-2x2+x+3,求函數(shù)單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)的定義域?yàn)閇-1,2],則函數(shù)g(x)=f(x)-f(-x)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1,a2,…,ak是以4為首項(xiàng)、-2為公差的等差數(shù)列,ak+1,ak+2,…,a2k是以
1
2
為首項(xiàng)、
1
2
為公比的等比數(shù)列(k≥3,k∈N*),且對(duì)任意的n∈N*,都有an+2k=an成立,Sn是數(shù)列{an}的前n項(xiàng)和.
(1)當(dāng)k=5時(shí),求a48的值;
(2)判斷是否存在k,使a64k+3≥230成立,若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,PD⊥底面ABCD,E為PC的中點(diǎn),底面BCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求四棱錐P-ABCD的體積.
(2)求證:BC⊥底面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ex-1
ex+1

(1)判斷函數(shù)f(x)的單調(diào)性,并給予證明;
(2)若f(x)>-m2+2bm-1對(duì)所有x∈R,b∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的可導(dǎo)函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x),滿足對(duì)任意實(shí)數(shù)x,f(x)+f(-x)=x2,對(duì)任意正數(shù)x,f′(x)>x,若f(2-a)-f(a)≥2-2a,則a的范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案