執(zhí)行如圖所示的程序框圖,若輸入的x的值為1,則輸出的n的值為( 。
A、5B、3C、2D、1
考點(diǎn):程序框圖
專題:算法和程序框圖
分析:由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量n的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.
解答: 解:當(dāng)x=1時,x2-4x+3=0,滿足繼續(xù)循環(huán)的條件,故x=2,n=1;
當(dāng)x=2時,x2-4x+3=-1<0,滿足繼續(xù)循環(huán)的條件,故x=3,n=2;
當(dāng)x=3時,x2-4x+3=0,滿足繼續(xù)循環(huán)的條件,故x=4,n=3;
當(dāng)x=4時,x2-4x+3=3>0,不滿足繼續(xù)循環(huán)的條件,
故輸出的n值為3,
故選:B.
點(diǎn)評:本題考查的知識點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記函數(shù)f(x)=
3-x
+ln(x-1)的定義域?yàn)榧螹,函數(shù)g(x)=-x2-2x+1的值域?yàn)榧螻,則M∩N=( 。
A、[2,3]
B、[1,2]
C、(1,2]
D、(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的圖象如圖所示,則f(0)的值為(  )
A、
2
B、0
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面有甲、乙二人進(jìn)行的四種游戲:
游戲序號游戲規(guī)則“甲勝”的標(biāo)準(zhǔn)“乙勝”的標(biāo)準(zhǔn)
連續(xù)投擲硬幣三次2次正面向上,1次反面向上1次正面向上,2次反面向上
從有2個紅球和2個黑球的袋中一次取兩個球取出的兩個球同色取出的兩個球不同色
同時擲兩個骰子向上點(diǎn)數(shù)之和為5向上點(diǎn)數(shù)之和為9
從52張撲克牌(沒有大小王)中隨機(jī)抽一張牌是J或Q或K比4大比8小
其中公平的游戲序號是( 。ㄈ羲姆N游戲中的每個游戲出現(xiàn)其它的結(jié)果,記為“甲、乙都不獲勝”)
A、①②③B、①②④
C、①③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα+cosα=
4
5
,則sin2α=( 。
A、-
12
25
B、-
9
25
C、
9
25
D、
12
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

新余市乘出租車計(jì)費(fèi)規(guī)定:2公里以內(nèi)5元,超過2公里不超過8公里按每公里1.6元計(jì)費(fèi),超過8公里以后按每公里2.4元計(jì)費(fèi).若甲、乙兩地相距10公里,則乘出租車從甲地到乙地共需要支付乘車費(fèi)為( 。
A、17.4元
B、20.4元
C、21.8元
D、22.8元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯誤的是(  )
A、若變量y和x之間的相關(guān)系數(shù)為r=-0.9362,則變量y和x之間具有線性相關(guān)關(guān)系
B、線性回歸方程對應(yīng)的直線y=
b
x+
a
至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1,y1),(x2,y2),…,(xn,yn)中的一個點(diǎn)
C、在獨(dú)立性檢驗(yàn)時,兩個變量的2×2列表中對角線上的乘積相差越大,說明這兩個變量沒有關(guān)系的可能性越大
D、在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若三邊的長為連續(xù)的三個正整數(shù),且A>B>C,A=2C,且3b=20acosA,則sinA:sinB:sinC為( 。
A、4:3:2
B、5:4:3
C、6:5:4
D、7:6:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知P為⊙O外一點(diǎn),A在⊙O上,PBC為割線,弦CD∥AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且∠EDF=∠ECD.
(Ⅰ)求證:EF•EP=DE•EA;
(Ⅱ)若EB=DE=6,EF=4,求EP的長.

查看答案和解析>>

同步練習(xí)冊答案