17.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,
(1)求由$\left\{\begin{array}{l}0≤x≤\frac{5π}{12}\\ 0≤y≤f(x)\end{array}$,確定的區(qū)域的面積;
(2)如何由函數(shù)y=sinx的圖象通過相應的平移與伸縮變換得到函數(shù)f(x)的圖象,寫出變換過程.

分析 (1)由函數(shù)的圖象可求出A,由周期求出ω,由五點法作圖求出φ的值,從而求得函數(shù)的解析式,再根據(jù)定積分的計算方法即可求出面積
(2)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:(1)由圖象知A=1.f(x)的最小正周期$T=4×(\frac{5π}{12}-\frac{π}{6})=π$,
故$ω=\frac{2π}{T}=2$,
將點$(\frac{π}{6},1)$代入f(x)的解析式得$sin(\frac{π}{3}+φ)=1$,又$|φ|<\frac{π}{2}$,∴$φ=\frac{π}{6}$.
故函數(shù)f(x)的解析式為$f(x)=sin(2x+\frac{π}{6})$,
確定的區(qū)域的面積S=${∫}_{0}^{\frac{5π}{12}}$sin(2x+$\frac{π}{6}$)dx=-$\frac{1}{2}$cos(2x+$\frac{π}{6}$)|${\;}_{0}^{\frac{5π}{12}}$=$\frac{2+\sqrt{3}}{4}$
(2)變換過程如下:y=sinx圖象上的$\frac{所有點的橫坐標縮小為原來的\frac{1}{2}倍}{縱坐標不變}$y=sin2x的圖象,
再把y=sin2x的圖象$\stackrel{向左平移\frac{π}{12}個單位}{→}$$y=sin(2x+\frac{π}{6})$的圖象,
另解:y=sinx$\stackrel{圖象向左平移\frac{π}{6}個單位}{→}$$y=sin(x+\frac{π}{6})$的圖象.
再把$y=sin(x+\frac{π}{6})$的圖象$\frac{所有點的橫坐標縮小為原來的\frac{1}{2}倍}{縱坐標不變}$$y=sin(2x+\frac{π}{6})$的圖象

點評 本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.在△ABC中,BC=1且cosA=-$\frac{\sqrt{10}}{10}$,B=$\frac{π}{4}$,則BC邊上的高等于( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x-1)=x2-2x,且f(a)=3,則實數(shù)a的值等于( 。
A.$\sqrt{2}$B.$±\sqrt{2}$C.2D.±2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知全集為U=R,集合B={x|($\frac{1}{2}$)x≤1},A={x|x≥2},則(∁UA)∩B=(  )
A.[0,2)B.[0,2]C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在△ABC中,角A,B,C的對邊分別為a,b,c,已知ccosB=(2a-b)cosC.
(1)求角C的大小;
(2)若AB=4,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=x2-(2-a)x-(2-a)lnx..
(1)若a=1,求函數(shù)f(x)的極值;
(2)若f(x)在其定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.下表提供了某廠節(jié)能降耗技術(shù)改造后,生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù):
x34567
y2.5344.56
(1)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(2)求出的回歸直線方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?
附:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知數(shù)列{an}的前4項為11,102,1003,10004,…,則它的一個通項公式為${a}_{n}={10}^{n}+n$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知圓心為F1的圓的方程為(x+2)2+y2=32,F(xiàn)2(2,0),C是圓F1上的動點,F(xiàn)2C的垂直平分線交F1C于D.
(I) 求動點D的軌跡方程;
(Ⅱ)設N(0,2),過點P(-1,-2)作直線l,交D的軌跡于不同于N的A,B兩點,直線NA,NB的斜率分別為k1,k2,證明:k1+k2為定值.

查看答案和解析>>

同步練習冊答案