的外接圓半徑,角的對邊分別是,且
(1)求角和邊長
(2)求的最大值及取得最大值時(shí)的的值,并判斷此時(shí)三角形的形狀.

(1);(2)的最大值,此時(shí),此時(shí)三角形是等邊三角形.

解析試題分析:本題主要考查解三角形中的正弦定理或余弦定理的運(yùn)用,以及基本不等式的運(yùn)用和求三角形面積的最值.第一問,先利用余弦定理將角化成邊,去分母化簡,得,再利用余弦定理求,在中,,所以,再利用正弦定理求邊;第二問,先通過余弦定理,再結(jié)合基本不等式求出的最大值,得到面積的最大值,注意等號成立的條件,通過這個(gè)條件得出,所以判斷三角形形狀為等邊三角形.
試題解析:(1)由,得:
,所以,           4分
,所以,又,所以       6分
(2)由,,
(當(dāng)且僅當(dāng)時(shí)取等號)     8分
所以,(當(dāng)且僅當(dāng)時(shí)取等號)        10分
此時(shí)
綜上,的最大值,取得最大值時(shí),此時(shí)三角形是等邊三角形.    12分
考點(diǎn):1.正弦定理;2.余弦定理;3.均值定理;4.三角形面積公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,已知,求邊的長及的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,(a+b+c)(a-b+c)=ac.
(Ⅰ)求B;
(Ⅱ)若sinAsinC=,求C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

的角的對邊分別為,已知.
(Ⅰ)求角
(Ⅱ)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,
(Ⅰ)求的值;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,已知角的對邊分別為.向量且向量共線.
(Ⅰ)求的值;
(Ⅱ)若,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)△的內(nèi)角的對邊分別為,且
(1)求角的大;
(2)若,,求a,c,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,已知.
(Ⅰ)求的值;
(Ⅱ)若,,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

懷化市某棚戶區(qū)改造工程規(guī)劃用地近似為圖中半徑為的圓面,圖中圓內(nèi)接四邊形為擬定拆遷的棚戶區(qū),測得百米,百米,百米.

(Ⅰ)請計(jì)算原棚戶區(qū)的面積及圓面的半徑
(Ⅱ)因地理?xiàng)l件的限制,邊界,不能變更,而邊界,可以調(diào)整,為了提高棚戶區(qū)改造建設(shè)用地的利用率,請?jiān)趫A弧上求出一點(diǎn),使得棚戶區(qū)改造的新建筑用地的面積最大,并求最大值.

查看答案和解析>>

同步練習(xí)冊答案