如圖,在三棱柱A1B1C1-ABC中,D,E,F(xiàn)分別是AB,AC,AA1的中點,設三棱錐F-ADE的體積為V1,三棱柱A1B1C1-ABC的體積為V2,則V1:V2=   
【答案】分析:由三角形的相似比等于面積比的平方得到棱錐和棱柱的底面積的比值,由題意棱柱的高是棱錐的高的2倍,然后直接由體積公式可得比值.
解答:解:因為D,E,分別是AB,AC的中點,所以S△ADE:S△ABC=1:4,
又F是AA1的中點,所以A1到底面的距離H為F到底面距離h的2倍.
即三棱柱A1B1C1-ABC的高是三棱錐F-ADE高的2倍.
所以V1:V2==1:24.
故答案為1:24.
點評:本題考查了棱柱和棱錐的體積公式,考查了相似多邊形的面積的比等于相似比的平方,是基礎的計算題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,每個側(cè)面均是邊長為2的正方形,D為底邊AB的中點,E為側(cè)棱CC1的中點,AB1與A1B的交點為O.
(Ⅰ)求證:CD∥平面A1EB;
(Ⅱ)求點A到平面A1EB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC,AB⊥AC,點D是BC上一點,且AD⊥C1D.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)求證:A1B∥平面ADC1;
(3)求二面角C-AC1-D大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1均為正方形,∠BAC=90°,D為BC中點.
(Ⅰ)求證:A1B∥平面ADC1
(Ⅱ)求證:C1A⊥B1C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,AB⊥AC,頂點在A1底面ABC上的射影恰為點B,且AB=AC=A1B=2.
(1)求證:A1C1⊥平面ABA1B1
(2)求棱AA1與BC所成的角的大。
(3)在線段B1C1上確定一點P,使AP=
14
,并求出二面角P-AB-A1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC=A1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.
(1)求棱AA1與BC所成的角的大;
(2)在棱B1C1上確定一點P,使二面角P-AB-A1的平面角的余弦值為
3
10
10

查看答案和解析>>

同步練習冊答案