3.將極坐標(biāo)(2,$\frac{3π}{2}$)化為直角坐標(biāo)為(0,-2).

分析 利用x=ρcosθ,y=ρsinθ即可得出直角坐標(biāo).

解答 解:由x=2$cos\frac{3π}{2}$=0,y=2$sin\frac{3π}{2}$=-2.
∴極坐標(biāo)(2,$\frac{3π}{2}$)化為直角坐標(biāo)為(0,-2).
故答案為:(0,-2).

點(diǎn)評 本題考查了極坐標(biāo)化為直角坐標(biāo),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知四棱錐P-ABCD如圖所示,其中平面PAD⊥平面ABCD,PA⊥AD,PA=AB=BC=AC=4,線段AC被線段BD平分.
(I)求證:BD⊥平面PAC;
(Ⅱ)若∠DAC=30°,求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知矩陣A=$[\begin{array}{l}{3}&{0}\\{2}&{1}\end{array}]$的逆矩陣A-1=$[\begin{array}{l}{a}&\\{c}&ilxogbr\end{array}]$,則行列式$|\begin{array}{l}{a}&\\{c}&htk9dup\end{array}|$的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機(jī)的對入院50人進(jìn)行了問卷調(diào)查,得到了如表的列聯(lián)表:
患心肺疾病不患心肺疾病合計(jì)
5
10
合計(jì)50
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為$\frac{3}{5}$.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其它方面的排查,記選出患胃病的女性人數(shù)為x,求x的分布列、數(shù)學(xué)期望.
參考公式:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
下面的臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.語文老師要從10篇課文中隨機(jī)抽3篇讓學(xué)生背誦,某學(xué)生只能背誦其中的6篇,求:
( I)抽到他能背誦的課文的數(shù)量的分布列;
( II)他能及格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.方程3x+1=2${\;}^{{x}^{2}-1}$的解為1+log23和-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓M:x2+(y-4)2=4,點(diǎn)P是直線l:x-2y=0上的一動點(diǎn),過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.
(1)當(dāng)切線PA的長度為$2\sqrt{3}$時,求點(diǎn)P的坐標(biāo);
(2)若△PAM的外接圓為圓N,試問:當(dāng)P在直線l上運(yùn)動時,圓N是否過定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,說明理由.
(3)求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖:四邊形ABCD為等腰梯形,且AD∥BC,E為BC中點(diǎn),AB=AD=BE.現(xiàn)沿DE將△CDE折起成四棱錐C′-ABED,點(diǎn)O為ED的中點(diǎn).
(1)在棱AC′上是否存在一點(diǎn)M,使得OM⊥平面C′BE?并證明你的結(jié)論;
(2)若AB=2,求四棱錐C′-ABED的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1.現(xiàn)以AD為一邊向梯形外作正方形ADEF,然后沿邊AD將正方形ADEF翻折,使平面 ADEF與平面ABCD垂直,M為ED的中點(diǎn),如圖2.

(1)求證:AM∥平面BEC;
(2)求平面 EBC與平面ABCD夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案