2.在等差數(shù)列{an}中,a10=0,則有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立,類比上述性質(zhì),相應(yīng)地在等比數(shù)列{bn}中,若b9=1,則成立的等式是( 。
A.b1b2…bn=b1b2…b17-n。╪<17,n∈N*
B.b1b2…bn=b1b2…b18-n(n<18,n∈N*
C.b1+b2+…+bn=b1+b2+…+b17-n(n<17,n∈N*
D.b1+b2+…+bn=b1+b2-1+…+b18-n(n<18,n∈N*

分析 根據(jù)等差數(shù)列與等比數(shù)列通項(xiàng)的性質(zhì),結(jié)合類比的規(guī)則,和類比積,加類比乘,由類比規(guī)律得出結(jié)論即可.

解答 解:在等差數(shù)列{an}中,若a10=0,則有等式a1+a2+…+an=a1+a2+…+a19-n成立(n<19,n∈N*),
故相應(yīng)的在等比數(shù)列{bn}中,若b9=1,則有等式b1b2…bn=b1b2…b17-n(n<17,n∈N*
故選A.

點(diǎn)評(píng) 本題的考點(diǎn)是類比推理,考查類比推理,解題的關(guān)鍵是掌握好類比推理的定義及等差等比數(shù)列之間的共性,由此得出類比的結(jié)論即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在極坐標(biāo)系中,以點(diǎn)C(2,$\frac{π}{2}$)為圓心,半徑為3的圓C與直線l:θ=$\frac{π}{3}$(ρ=R)交于A,B兩點(diǎn).
(1)求圓C及直線l的普通方程.
(2)求弦長(zhǎng)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)a,b,c是三個(gè)正實(shí)數(shù),且a(a+b+c)=bc,則$\frac{a}{b+c}$的最大值為$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)α、β、γ是三個(gè)互不重合的平面,l是直線,給出下列命題
①若α⊥β,β⊥γ,則α∥γ;②若l上兩點(diǎn)到α的距離相等,則l∥α;
③若l⊥α,l∥β,則α⊥β;④若α∥β,l∥α,l?β,則l∥β.
其中正確的命題是( 。
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17..有甲、乙、丙、丁四支球隊(duì)進(jìn)行單循環(huán)比賽,最后據(jù)各隊(duì)積分決出名次.規(guī)定每場(chǎng)比賽必須決出勝負(fù),其中勝方積2分,負(fù)方積1分,已知球隊(duì)甲與球隊(duì)乙對(duì)陣,甲隊(duì)取勝的概率為$\frac{2}{5}$,與球隊(duì)丙、丁對(duì)陣,甲隊(duì)取勝的概率均為$\frac{1}{2}$,且各場(chǎng)次勝負(fù)情況彼此沒有影響.
(1)甲隊(duì)至少勝一場(chǎng)的概率;  
(2)求球隊(duì)甲賽后積分ξ的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=cos2x+$\sqrt{3}$sinxcosx.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.將一枚骰子先后拋擲兩次得到的點(diǎn)數(shù)依次記為a,b,則直線ax+by=0與圓(x-3)2+y2=3無公共點(diǎn)的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知二項(xiàng)式${({x^3}-\frac{2}{{\sqrt{x}}})^6}$展開式中,則x4項(xiàng)的系數(shù)為240.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若$b+c=\sqrt{10}\;,\;\;a=2$,求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案