12.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若$b+c=\sqrt{10}\;,\;\;a=2$,求△ABC的面積S.

分析 (1)由已知利用正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡可得sinB=2sinBcosA,結(jié)合sinB≠0,可求cosA,進而可求A的值.
(2)由已知及余弦定理,平方和公式可求bc的值,進而利用三角形面積公式即可計算得解.

解答 解:(1)在△ABC中,∵acosC+ccosA=2bcosA,
∴sinAcosC+sinCcosA=2sinBcosA,
∴sin(A+C)=sinB=2sinBcosA,
∵sinB≠0,
∴$cosA=\frac{1}{2}$,可得:$A=\frac{π}{3}$.
(2)∵$cosA=\frac{1}{2}=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}$,$b+c=\sqrt{10}\;,\;\;a=2$,
∴b2+c2=bc+4,可得:(b+c)2=3bc+4=10,可得:bc=2.
∴$S=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{2}$.

點評 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,平方和公式,三角形面積公式在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等差數(shù)列{an}中,a10=0,則有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立,類比上述性質(zhì),相應(yīng)地在等比數(shù)列{bn}中,若b9=1,則成立的等式是(  )
A.b1b2…bn=b1b2…b17-n。╪<17,n∈N*
B.b1b2…bn=b1b2…b18-n(n<18,n∈N*
C.b1+b2+…+bn=b1+b2+…+b17-n(n<17,n∈N*
D.b1+b2+…+bn=b1+b2-1+…+b18-n(n<18,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$sin(\frac{π}{6}-α)-cosα=\frac{1}{3}$,則$cos(2α+\frac{π}{3})$=$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知三棱錐A-BCD中,AB⊥平面BCD,BC⊥CD,BC=CD=1,AB=$\sqrt{2}$,則該三棱錐外接球的體積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等差數(shù)列{an}的前n項和為Sn,且S3=6,S6=3,則S10=( 。
A.$\frac{1}{10}$B.0C.-10D.-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{2x-3y+6≥0}\\{x≤0}\\{y≥0}\end{array}\right.$,那么z=y-x的最大值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.“累積凈化量(CCM)”是空氣凈化器質(zhì)量的一個重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示.根據(jù)GB/T18801-2015《空氣凈化器》國家標(biāo)準(zhǔn),對空氣凈化器的累積凈化量(CCM)有如下等級劃分:
 累積凈化量(克) (3,5] (5,8] (8,12] 12以上
 等級 P1 P2 P3 P4
為了了解一批空氣凈化器(共2000臺)的質(zhì)量,隨機抽取n臺機器作為樣本進行估計,已知這n臺機器的
累積凈化量都分布在區(qū)間(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14],均勻分組,其中累積凈化量在(4,6]的所有數(shù)據(jù)有:4.5,4.6,5.2,5.7和5.9,并繪制了如下頻率分布直方圖.
(Ⅰ)求n的值及頻率分布直方圖中的x值;
(Ⅱ)以樣本估計總體,試估計這批空氣凈化器(共2000臺)中等級為P2的空氣凈化器有多少臺?
(Ⅲ)從累積凈化量在(4,6]的樣本中隨機抽取2臺,求恰好有1臺等級為P2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,平面PAC⊥平面ABCD,AC=2BC=2CD=4,∠ACB=∠ACD=60°.
(Ⅰ)證明:CP⊥BD;
(Ⅱ)若AP=PC=$2\sqrt{2}$,求三棱錐B-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義在R上的奇函數(shù)f(x)關(guān)于點(2,1)對稱,則f(6)=( 。
A.9B.7C.5D.3

查看答案和解析>>

同步練習(xí)冊答案