求下列函數(shù)的導函數(shù)
(1)y=(2x+1)2
(2)y=x2cos x    
(3)y=
sinx
x
考點:導數(shù)的運算
專題:導數(shù)的概念及應用
分析:根據(jù)函數(shù)的導數(shù)公式分別進行計算即可.
解答: 解:(1)函數(shù)的導數(shù)f′(x)=2(2x+1)×2=4(2x+1)=8x+4.
(2)函數(shù)的導數(shù)f′(x)=2xcosx+x2(-sinx)=2xcosx-x2sinx.   
(3)函數(shù)的導數(shù)f′(x)=
x•cosx-sinx
x2
點評:本題主要考查函數(shù)的導數(shù)的求解決,要求熟練掌握常見函數(shù)的導數(shù)公式,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ax-
1
x
在(0,+∞)上單調(diào)遞增,那么實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
3
sin(-1200°)
tan
11π
3
-(1-cos2585°)•tan(-
11
4
π).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點P(2,1)的直線l交x軸,y軸正半軸于A、B兩點,求使:
(1)傾斜角為120°的直線方程;
(2)△AOB面積最小時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S值為(  )
A、144B、36
C、49D、169

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若y=
x2-6x+25
+
x2-4x+13
,則y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
滿足
b
=(1,
3
),
b
•(
a
-
b
)=-3,則向量
a
b
方向上的投影為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ln
1+x
1-x
+sinx,則關于a的不等式f(a-2)+f(2a-2)>0的解集是( 。
A、(-∞,
4
3
B、(
1
2
4
3
C、(
4
3
,
3
2
D、(
4
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知cosα=
1
5
,求sinα,tanα的值;
(2)已知角α的終邊過點P(4a,-3a)(a<0),求2sinα+cosα的值.

查看答案和解析>>

同步練習冊答案