已知一組數(shù)據(jù)x1,x2,…,xn的方差s2=
1
n
[(x1-
.
x
)2+(x2-
.
x
)2+…+(xn-
.
x
)2]
,其中
.
x
是這組數(shù)據(jù)的平均數(shù).試證明s2=
1
n
(x12+x22+…+xn2)-
.
x
2
分析:將方差公式整理化簡即可.
解答:解:由于s2=
1
n
[(x1-
.
x
)
2
+(x2-
.
x
)
2
+…+(xn-
.
x
)
2
]

=
1
n
[x12+x22+…+xn2-2(x1+x2+…+xn)•
.
x
+n
.
x
2
]

=
1
n
(x12+x22+…+xn2-2n
.
x
.
x
+n
.
x
2
)

=
1
n
(x12+x22+…+xn2)-
.
x
2

則s2=
1
n
(x12+x22+…+xn2)-
.
x
2
點評:本題考查方差的計算公式的運用.一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為
.
x
,則
方差S2=
1
n
[(x1-
.
x
)
2
+(x2-
.
x
)
2
+…+(xn-
.
x
)
2
]
=
1
n
[x12+x22+…+xn2-n
.
x
2],
它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知一組數(shù)據(jù)x1,x2,…,x10的方差是2,且(x1-3)2+(x2-3)2+…+(x10-3)2=120,則
.
x
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一組數(shù)據(jù)x1,x2,x3,…,x10的方差是2,并且(x1-3)2+(x2-3)2+…+(x10-3)2=120,求
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一組數(shù)據(jù)x1,x2,x3…xn的平均數(shù)
.
x
=5
,方差s2=4,則數(shù)據(jù)3x1+7,3x2+7,3x3+7…3xn+7的平均數(shù)和標準差分別為( 。
A、15,36B、22,6
C、15,6D、22,36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一組數(shù)據(jù)x1,x2,x3,…,xn的平均數(shù)是
.
x
,方差是S2,那么另一組數(shù)據(jù)2x1-1,2x2-1,2x3-1,…,2xn-1的平均數(shù)是
2
.
x
-1
2
.
x
-1
,方差是
4S2
4S2

查看答案和解析>>

同步練習冊答案