7.已知定義在R上的函數(shù)y=f(x)滿足以下三個條件:
①對于任意的x∈R,都有f(x+4)=f(x);
②對于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);
③函數(shù)y=f(x+2)的圖象關(guān)于y軸對稱,則下列結(jié)論中正確的是( 。
A.f(4.5)<f(7)<f(6.5)B.f(7)<f(4.5)<f(6.5)C.f(7)<f(6.5)<f(4.5)D.f(4.5)<f(6.5)<f(7)

分析 利用已知條件判斷函數(shù)的性質(zhì),然后推出結(jié)果即可.

解答 解:定義在R上的函數(shù)y=f(x)滿足以下三個條件:
①對于任意的x∈R,都有f(x+4)=f(x);
②對于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);
③函數(shù)y=f(x+2)的圖象關(guān)于y軸對稱,
可知函數(shù)是周期為4的函數(shù),x∈[0,2]函數(shù)是增函數(shù),函數(shù)的對稱軸為x=2,
f(4.5)=f(0.5),f(7)=f(3)=f(1),f(6.5)=f(2.5)=f(1.5),
可得f(4.5)<f(7)<f(6.5).
故選:A.

點評 本題考查函數(shù)與方程的綜合應用,函數(shù)的對稱軸周期性以及單調(diào)性的應用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.記不等式組$\left\{\begin{array}{l}4x+3y≥10\\ x≤3\\ y≤4\end{array}\right.$表示的平面區(qū)域為D,過區(qū)域D中任意一點P作圓x2+y2=1的兩條切線,切點分別為A,B,則cos∠PAB的最大值為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x(a∈R+)在區(qū)間[2,4]上為單調(diào)遞增函數(shù),則$\frac{25}{a}$+a的取值范圍為( 。
A.[10,+∞)B.[$\frac{29}{2}$,+∞)C.[$\frac{25}{2}$,+∞)D.[$\frac{41}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系中,曲線C的方程為(x-2)2+y2=1,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)若P為曲線M:ρ=-2cosθ上任意一點,Q為曲線C上任意一點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.執(zhí)行如圖所示的程序框圖,輸出的T=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.一拱橋的形狀為拋物線,該拋物線拱的高為h,寬為b,此拋物線拱的面積為S,若b=3h,則S等于( 。
A.h2B.$\frac{3}{2}$h2C.$\sqrt{3}$h2D.2h2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=|3x-a|+|3x-6|,g(x)=|x-2|+1.
(Ⅰ)a=1時,解不等式f(x)≥8;
(Ⅱ)若對任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知菱形ABCD如圖(1)所示,其中∠ACD=60°,AB=2,AC與BD相交于點O,現(xiàn)沿AC進行翻折,使得平面ACD⊥平面ABC,取點E,連接AE,BE,CE,DE,使得線段BE再平面ABC內(nèi)的投影落在線段OB上,得到的圖形如圖(2)所示,其中∠OBE=60°,BE=2.
(Ⅰ)證明:DE⊥AC;
(Ⅱ)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an}為等比數(shù)列,an>0,a1=2,2a2+a3=30.
(Ⅰ)求an;
(Ⅱ)若數(shù)列{bn}滿足,bn+1=bn+an,b1=a2,求bn

查看答案和解析>>

同步練習冊答案