已知甲、乙、丙等6人 .

(1)這6人同時參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的去法?

(2)這6人同時參加6項不同的活動,每項活動限1人參加,其中甲不參加第一項活動,乙不參加第三項活動,共有多少種不同的安排方法?

(3)這6人同時參加4項不同的活動,求每項活動至少有1人參加的概率.

 

【答案】

(1)63

(2)504

(3)

【解析】

試題分析:解:(1)

故共有63種不同的去法  4分

(2)

故共有504種不同的安排方法 8分

(3)

故每項活動至少有1人參加的概率為… 13分

考點:組合數(shù)公式以及排列數(shù),概率

點評:主要是考查了組合和排列在實際生活中的運用,屬于基礎(chǔ)題

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知甲、乙、丙等6人.
(1)這6人同時參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的去法?
(2)這6人同時參加6項不同的活動,每項活動限1人參加,其中甲不參加第一項活動,乙不參加第三項活動,共有多少種不同的安排方法?
(3)這6人同時參加4項不同的活動,求每項活動至少有1人參加的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知挑選空軍飛行學(xué)員可以說是“萬里挑一”,要想通過需過“五關(guān)”--目測、初檢、復(fù)檢、文考、政審等.若某校甲、乙、丙三個同學(xué)都順利通過了前兩關(guān),有望成為光榮的空軍飛行學(xué)員.根據(jù)分析,甲、乙、丙三個同學(xué)能通過復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過文考關(guān)的概率分別是0.6,0.5,0.4,通過政審關(guān)的概率均為1.后三關(guān)相互獨立.
(1)求甲、乙、丙三個同學(xué)中恰有一人通過復(fù)檢的概率;
(2)設(shè)通過最后三關(guān)后,能被錄取的人數(shù)為X,求隨機(jī)變量X的期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知甲、乙、丙等6人.
(1)這6人同時參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的去法?
(2)這6人同時參加6項不同的活動,每項活動限1人參加,其中甲不參加第一項活動,乙不參加第三項活動,共有多少種不同的安排方法?
(3)這6人同時參加4項不同的活動,求每項活動至少有1人參加的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省寧波市萬里國際學(xué)校高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知甲、乙、丙等6人.
(1)這6人同時參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的去法?
(2)這6人同時參加6項不同的活動,每項活動限1人參加,其中甲不參加第一項活動,乙不參加第三項活動,共有多少種不同的安排方法?
(3)這6人同時參加4項不同的活動,求每項活動至少有1人參加的概率.

查看答案和解析>>

同步練習(xí)冊答案