18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,4),且$\overrightarrow{a}∥\overrightarrow$,則x等于( 。
A.$\frac{1}{2}$B.1C.2D.4

分析 利用向量共線定理即可得出.

解答 解:向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,4),且$\overrightarrow{a}∥\overrightarrow$,
∴2x=4,
∴x=2,
故選:C.

點(diǎn)評(píng) 熟練掌握向量共線定理是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.頂點(diǎn)間距離是2,漸近線方程是y=±x的雙曲線方程是(  )
A.x2-y2=1B.x2-y2=2
C.x2-y2=1或y2-x2=1D.x2-y2=2或y2-x2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.給出下列四個(gè)命題:
①若命題“若¬p則q”為真命題,則命題“若¬q則p”也是真命題
②直線a∥平面α的充要條件是:直線a?平面α
③“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件;
④若命題p:“?x∈R,x2-x-1>0“,則命題p的否定為:“?x∈R,x2-x-1≤0”
其中真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)y=x2cosx的部分圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若復(fù)數(shù)z滿足z(2-i)=10+5i(i為虛數(shù)單位),則|z|=( 。
A.25B.10C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\frac{x}{{e}^{x}},x≤0}\\{\frac{lnx}{x},x>0}\end{array}\right.$,g(x)=-4x+a•2x+1+a2+a-1(a∈R),若f(g(x))>e對(duì)x∈R恒成立(其中e是自然對(duì)數(shù)的底數(shù)),則a的取值范圍是[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在直四棱柱ABCD-A1B1C1D1中,∠BAD=60°,AB=BD,BC=CD.
(1)求證:平面ACC1A1⊥平面A1BD;
(2)當(dāng)BC⊥CD時(shí),直線BC與平面A1BD所成的角能否為45°?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合A={0,1,2},B={m,3,4},若A∩B={2},則實(shí)數(shù)m=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)平面向量$\overrightarrow{OA}$、$\overrightarrow{OB}$滿足|$\overrightarrow{OA}$|=2、|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}•\overrightarrow{OB}$=0,點(diǎn)P滿足$\overrightarrow{OP}=\frac{m}{{\sqrt{2{m^2}+2{n^2}}}}\overrightarrow{OA}+\frac{{\sqrt{2}n}}{{\sqrt{{m^2}+{n^2}}}}\overrightarrow{OB}$,其中m≥0,n≥0,則點(diǎn)P所表示的軌跡長(zhǎng)度為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{π}{2}$D.$\frac{{\sqrt{2}π}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案