F是拋物線y2=2px(p>0)的焦點(diǎn),P是拋物線上一點(diǎn),F(xiàn)P延長線交y軸于Q,若P恰好是FQ的中點(diǎn),則|PF|=( 。
A.
p
3
B.
2
3
p
C.pD.
3
4
p
由于F是拋物線y2=2px(p>0)的焦點(diǎn),
則點(diǎn)F為(
p
2
,0),
又由P是拋物線上一點(diǎn),F(xiàn)P延長線交y軸于Q,P恰好是FQ的中點(diǎn),
則點(diǎn)P的橫坐標(biāo)為
p
4
,故P到準(zhǔn)線的距離為
p
4
-(-
p
2
)
=
3p
4

根據(jù)拋物線的定義可知|PF|即為P到準(zhǔn)線的距離,
∴|PF|=
3p
4

故選:D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l1:4x-3y+8=0和直線l2:x=-1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是(  )
A.
12
5
B.3C.2D.
37
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線C是平面內(nèi)與定點(diǎn)F(2,0)和定直線x=-2的距離的積等于4的點(diǎn)的軌跡.給出下列四個(gè)結(jié)論:
①曲線C過坐標(biāo)原點(diǎn);
②曲線C關(guān)于x軸對(duì)稱;
③曲線C與y軸有3個(gè)交點(diǎn);
④若點(diǎn)M在曲線C上,則|MF|的最小值為2(
2
-1)

其中,所有正確結(jié)論的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P(0,2),拋物線C:y2=2px(p>0)的焦點(diǎn)為F,線段PF與拋物線C的交點(diǎn)為M,過M作拋物線準(zhǔn)線的垂線,垂足為Q.若∠PQF=90°,則p=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法中,正確的有______.
①若點(diǎn)P(x0,y0)是拋物線y2=2px上一點(diǎn),則該點(diǎn)到拋物線的焦點(diǎn)F的距離是|PF|=x0+
P
2

②方程x2+y2-2x+1=0表示的圖形是圓;
③設(shè)定圓O上有一動(dòng)點(diǎn)A,圓O內(nèi)一定點(diǎn)M,AM的垂直平分線與半徑OA的交點(diǎn)為點(diǎn)P,則P的軌跡為一橢圓;
④某工廠甲、乙、丙三個(gè)車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件.為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個(gè)容量為n的樣本進(jìn)行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=13;
⑤雙曲線
y2
49
-
x2
25
=-1的漸近線方程是y=±
5
7
x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=2x2的準(zhǔn)線方程為( 。
A.y=
1
4
B.y=
1
8
C.y=-
1
4
D.y=-
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線y2=4x的準(zhǔn)線也是雙曲線
x2
a2
-
4y2
3
=1
的一條準(zhǔn)線,則該雙曲線的漸近線方程為( 。
A.y=±2xB.y=±
2
2
x
C.y=±
3
x
D.y=±
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等邊三角形的一個(gè)頂點(diǎn)在坐標(biāo)原點(diǎn),另外兩個(gè)頂點(diǎn)在拋物線y2=2x上,則該三角形的面積是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線y2=x上兩點(diǎn)A(x1,y1)、B(x2,y2)關(guān)于直線y=x+b對(duì)稱,且y1y2=-1,則實(shí)數(shù)b的值為( 。
A.-3B.3C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案