19.函數(shù)y=x+$\frac{1}{2x}$(x>0)的值域是[$\sqrt{2}$,+∞).

分析 利用基本不等式a+b≥$2\sqrt{ab}$(a>0,b>0)來(lái)求解即可.

解答 解:由題意知x>0,
∵x>0,$\frac{1}{2x}>0$
所以,y=x+$\frac{1}{2x}$≥2$\sqrt{x•\frac{1}{2x}}$=$\sqrt{2}$;
故答案為:[$\sqrt{2}$,+∞).

點(diǎn)評(píng) 本題考查了基本不等式求值域,屬簡(jiǎn)單題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=|cosx|sinx,給出下列五個(gè)說(shuō)法:
①f($\frac{82}{3}$π)=-$\frac{{\sqrt{3}}}{4}$;
②若|f(x1)|=|f(x2)|,則x1=x2+kπ(k∈Z);
③f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}}$]上單調(diào)遞增;
④函數(shù)f(x)的周期為π.
⑤f(x)的圖象關(guān)于點(diǎn)($\frac{π}{2}$,0)成中心對(duì)稱.
其中正確說(shuō)法的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=x2+2bx,g(x)=|x-1|,若對(duì)任意x1,x2∈[0,2],當(dāng)x1<x2時(shí)都有f(x1)-f(x2)<g(x1)-g(x2),則實(shí)數(shù)b的最小值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)f(x)=(a-x)ex-1.
(Ⅰ)當(dāng)x>0時(shí),f(x)<0,求實(shí)數(shù)a的最大值;
(Ⅱ)設(shè)$g(x)=\frac{{{e^x}-1}}{x}$,x1=1,${e^{{x_{n+1}}}}=g({x_n})({n∈{N^*}})$,證明${x_n}>{x_{n+1}}>\frac{1}{2^n}({n∈{N^*}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知A,B,C,D是空間四點(diǎn),甲:A,B,C,D四點(diǎn)不共面,乙:直線AC和BD不相交.①若甲,則乙;②若乙,則甲,則( 。
A.①成立,②不成立B.①不成立,②成立C.①②都成立D.①②都不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若x${\;}^{\frac{2}{3}}$=2,則(x+3)${\;}^{\frac{1}{2}}$=$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),離心率為$\frac{\sqrt{3}}{3}$,點(diǎn)P在橢圓C上,且點(diǎn)P在x軸上的正投影恰為F1,在y軸上的正投影為點(diǎn)(0,$\frac{2\sqrt{3}}{3}$).
(1)求橢圓C的方程;
(2)過(guò)F1的直線l與橢圓C交于A,B兩點(diǎn),過(guò)點(diǎn)P且平行于直線l的直線交橢圓C于另一點(diǎn)Q,問(wèn):四邊形PABQ能否成為平行四邊形?若能,請(qǐng)求出直線l的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若2a=5b=100,則$\frac{1}{a}+\frac{1}$( 。
A.1B.2C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知△ABC的三個(gè)內(nèi)角A、B、C成等差數(shù)列,它們的對(duì)邊分別為a,b,c,且滿足a:b=$\sqrt{2}$:$\sqrt{3}$,c=2.
(1)求A、B、C;
(2)求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案