在圖一所示的平面圖形中,是邊長(zhǎng)為 的等邊三角形,是分別以為底的全等的等腰三角形,現(xiàn)將該平面圖形分別沿折疊,使所在平面都與平面垂直,連接,得到圖二所示的幾何體,據(jù)此幾何體解決下面問(wèn)題.

(1)求證:;
(2)當(dāng)時(shí),求三棱錐的體積
(3)在(2)的前提下,求二面角的余弦值.

(1)通過(guò)計(jì)算體積證明。
(2)二面角是鈍二面角,.

解析試題分析:(1)證明:如圖,

分別取AC、BC中點(diǎn)M、N,連接FM,EN,MN,是全等的等腰三角形,,,又所在平面都與平面垂直,平面ABC,平面ABC,,四邊形EFMN是平行四邊形,,又,,同理可得:,,故是邊長(zhǎng)為的正三角形,.···
過(guò)M作MQ于Q,解得MQ=,即為M到平面ABD的距離,由(1)可知平面MNEF平面ABD,E到平面ABD的距離為,,
.···
分別以NA、NB、NE所在直線為x、y、z軸建立空間直角坐標(biāo)系,
依題意得,, ,,
,,

設(shè)是平面ADF的一個(gè)法向量,
則有,即
,得
又易知是平面ABD的一個(gè)法向量,
設(shè)二面角的平面角為,
,
二面角是鈍二面角,.···(12分)
考點(diǎn):本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系,體積計(jì)算、角的計(jì)算。
點(diǎn)評(píng):中檔題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟。利用向量則能簡(jiǎn)化證明過(guò)程,對(duì)計(jì)算能力要求高。解答立體幾何問(wèn)題,另一個(gè)重要思想是“轉(zhuǎn)化與化歸思想”,即注意將空間問(wèn)題轉(zhuǎn)化成平面問(wèn)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)面底面,若、分別為、的中點(diǎn).

(Ⅰ) 求證://平面
(Ⅱ) 求證:平面平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,為圓的直徑,點(diǎn)、在圓上,,矩形所在的平面和圓所在的平面互相垂直,且.

(1)求證:平面;
(2)設(shè)的中點(diǎn)為,求證:平面;
(3)設(shè)平面將幾何體分成的兩個(gè)錐體的體積分別為,,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在正四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)棱,的中點(diǎn),是側(cè)棱上的一動(dòng)點(diǎn)。

(1)證明:
(2)當(dāng)直線時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。
求證:

(1)PA∥平面BDE
(2)平面PAC平面BDE

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,是正三角形,都垂直于平面,且的中點(diǎn).

求證:(1)平面;
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖的多面體中,⊥平面,,,,
,,的中點(diǎn).

(Ⅰ)求證:平面;
(Ⅱ)求證:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖甲,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).

(1)求證:DC平面ABC;
(2)求BF與平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點(diǎn).

(Ⅰ)求證AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大。
(Ⅲ)試在線段AC上確定一點(diǎn)P,使得PF與BC所成的角是60°.

查看答案和解析>>

同步練習(xí)冊(cè)答案