已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<數(shù)學(xué)公式)的圖象與x軸的交點中,相鄰兩個交點之間的距離為數(shù)學(xué)公式,且圖象上一個最低點為M(數(shù)學(xué)公式,-2).
(1)求f(x)的解析式;  
(2)用“五點法”畫出函數(shù)f(x)的簡圖;
(3)求f(x)的單調(diào)增區(qū)間; 
(4)求f(x)的對稱軸方程、對稱點坐標(biāo).

解:(1)由題意可知,T=,A=2,ω=,
,∴φ=+2kπ,k∈Z,∵
∴φ=
所以函數(shù):f(x)=2sin(2x+).
(2)f(x)=2sin(2x+).
列表


(3)因為ysinx的單調(diào)增區(qū)間為:[-]k∈Z
所以f(x)=2sin(2x+) 可得
-≤2x+
解得 x∈[]k∈Z
f(x)的單調(diào)增區(qū)間:[]k∈Z
(5)函數(shù)f(x)=2sin(2x+).因為2x+=kπ+,k∈Z所以函數(shù)的對稱軸方程為:x=,k∈Z
因為2x+=kπ,k∈Z所以函數(shù)的對稱中心坐標(biāo)為:(),k∈Z.
分析:(1)直接求出函數(shù)的周期T,A以及ω,通過函數(shù)經(jīng)過的特殊點求出φ,得到函數(shù)的解析式;
(2)根據(jù)函數(shù)的解析式,通過列表,描點,連線畫出函數(shù)的圖象.
(3)利用正弦函數(shù)的單調(diào)增區(qū)間,求出f(x)的單調(diào)增區(qū)間;
(4)根據(jù)正弦函數(shù)的對稱軸方程,求出函數(shù)的對稱軸方程,利用正弦函數(shù)的對稱中心求出函數(shù)的對稱中心坐標(biāo)即可.
點評:本題是中檔題,考查三角函數(shù)的解析式的求法,五點法作圖,函數(shù)的單調(diào)性的應(yīng)用,函數(shù)圖象的平移伸縮變換,函數(shù)的最值,可以說一題概括三角函數(shù)的基本知識的靈活應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案