已知下列四個命題:
①若
a
b
,
b
c
,則
a
c
;
②設(shè)
a
是已知的平面向量,則給定向量
b
c
,總存在實數(shù)λ和μ,使
a
=λ
b
c
;
③第一象限角小于第二象限角;
④函數(shù)f(x)=
1
2
(sinx+cosx)-
1
2
|cosx-sinx|的最小正周期為2π.正確的命題有
 
考點:命題的真假判斷與應用,平行向量與共線向量,向量的共線定理,三角函數(shù)的周期性及其求法
專題:平面向量及應用
分析:對于①,取
b
=
0
可判定命題錯誤;
對于②,當三個向量不共面時不成立;
對于③,通過舉反例說明;
對于④,取絕對值化簡后判斷.
解答: 解:對于①,若
a
c
是非零向量且不共線,
b
=
0
,有
a
b
,
b
c
,但結(jié)論不成立,∴命題①錯誤;
對于②,當
a
不在向量
b
c
所共平面內(nèi)時,不存在實數(shù)λ和μ,使
a
=λ
b
c
,∴命題②錯誤;
對于③,390°是第一象限角,100°是第二象限角,但390°>100°,∴命題③錯誤;
對于④,由f(x)=
1
2
(sinx+cosx)-
1
2
|cosx-sinx|=
sinx  (cosx≥sinx)
cosx  (cosx<sinx)
,可知函數(shù)f(x)的最小正周期為2π,∴命題④正確.
故答案為:④.
點評:本題考查了平行向量與共線向量,考查了共線向量基本定理及共面向量,訓練了三角函數(shù)周期性的求法,關(guān)鍵是對命題④的判斷,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=12x,點M(a,0),過M的直線l交拋物線C于A,B兩點.
(Ⅰ)若a=1,拋物線C的焦點與AB中點的連線垂直于x軸,求直線l的方程;
(Ⅱ)設(shè)a為小于零的常數(shù),點A關(guān)于x軸的對稱點為A′,求證:直線A′B過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有4個紅球和6個白球,每個球都可以區(qū)分,從中取出4個,
(1)取出紅球比白球多的取法有多少種?
(2)假設(shè)取到一個紅球得2分,取到一個白球得1分,那么4個球的總分不少于5分的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD中,AB=3,BC=2,
AD
AB
=
1
3
|
AB
|2
(Ⅰ)求∠BAD的大;
(Ⅱ)若E為BC邊上的中點,F(xiàn)為平行四邊形內(nèi)(包括邊界)的一動點,求
AE
AF
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(a,0),對于拋物線y2=2x上任一點Q,都有|PQ|≥|a|,則實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記數(shù)列a1,a2,…,an為A,其中ai∈{0,1},i=1,2,3,…,n.定義變換f,f將A中的1變?yōu)?,0;0變?yōu)?,1.設(shè)A1=f(A),Ak+1=f(Ak),k∈N*;例如A:0,1,則A1=f(A):0,1,1,0.
(1)若n=3,則A2中的項數(shù)為
 
;
(2)設(shè)A為1,0,1,記Ak中相鄰兩項都是0的數(shù)對個數(shù)為bk,則bk關(guān)于k的表達式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知線段AB、BD在平面α內(nèi),BD⊥AB,線段AC⊥α,如果AB=2,BD=5,AC=4,則C、D間的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tanα=3,則(sinα+cosα)2的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=4,∠ABC=30°,D是邊BC上的一點,且
AD
AB
=
AD
AC
,則
AD
AB
的值等于
 

查看答案和解析>>

同步練習冊答案