【題目】寫出下列命題的否定,并判斷所得命題的真假:
(1);
(2)有的三角形是等邊三角形;
(3)有一個偶數(shù)是素數(shù)
(4)任意兩個等邊三角形都相似;
(5).
【答案】(1),假命題;
(2)所有的三角形都不是等邊三角形,假命題;
(3)任意一個偶數(shù)都不是素數(shù),假命題;
(4)存在兩個等邊三角形不相似,假命題;
(5),真命題.
【解析】
根據(jù)全稱命題的否定為特稱命題,特稱命題的否定為全稱命題,寫出其否定,再判斷其真假.
解:(1),是特稱命題,
所以其否定為:,
.
當時,
,故是假命題;
(2)有的三角形是等邊三角形,是特稱命題,
所以其否定為:所有的三角形都是等邊三角形,顯然是假命題;
(3)“有一個偶數(shù)是素數(shù)”是特稱命題,
所以其否定為:任意偶數(shù)都不是素數(shù).
因為是偶數(shù),且是素數(shù),故是假命題;
(4)“任意兩個等邊三角形都相似”,是全稱命題,
所以其否定為:有些等邊三角形不相似.
因為任意等邊三角形其三個角都相等,都為,故任意兩個等邊三角都相似,是真命題,
故命題“有些等邊三角形不相似.”是假命題.
(5),是特稱命題,
所以其否定為:
,
方程
無實數(shù)根,即對任意實數(shù)
成立,故是真命題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓和拋物線
,圓
與拋物線
的準線交于
、
兩點,
的面積為
,其中
是
的焦點.
(1)求拋物線的方程;
(2)不過原點的動直線
交該拋物線于
,
兩點,且滿足
,設(shè)點
為圓
上任意一動點,求當動點
到直線
的距離最大時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.02元,根據(jù)市場調(diào)查,銷售商一次訂購量不會超過500件.
(1)設(shè)一次訂購量為x件,服裝的實際出廠單價為P元,寫出函數(shù)的表達式;
(2)當銷售商一次訂購450件服裝時,該服裝廠獲得的利潤是多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù).
(Ⅰ)求的最小值及取得最小值時
的取值范圍;
(Ⅱ)若集合,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的否定,并判斷其真假:
(1)任何有理數(shù)都是實數(shù);
(2)存在一個實數(shù),能使
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以5cm為單位長度作單位圓,分別作出,
,
,
,
角的正弦線余弦線和正切線,量出它們的長度,寫出這些角的正弦余弦和正切的近似值,再使用科學(xué)計算器求這些角的正弦余弦和正切,并進行比較.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點
的動直線
相交于
點,與橢圓
分別交于
與
不同四點,直線
的斜率
滿足
.已知當
與
軸重合時,
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在定點,使得
為定值?若存在,求出
點坐標并求出此定值;若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ)
,
和
.
【解析】試題分析:(1)當與
軸重合時,
垂直于
軸,得
,得
,
從而得橢圓的方程;(2)由題目分析如果存兩定點,則
點的軌跡是橢圓或者雙曲線 ,所以把
坐標化,可得
點的軌跡是橢圓,從而求得定點
和點
.
試題解析:當
與
軸重合時,
, 即
,所以
垂直于
軸,得
,
,, 得
,
橢圓
的方程為
.
焦點
坐標分別為
, 當直線
或
斜率不存在時,
點坐標為
或
;
當直線斜率存在時,設(shè)斜率分別為
, 設(shè)
由
, 得:
, 所以:
,
, 則:
. 同理:
, 因為
, 所以
, 即
, 由題意知
, 所以
, 設(shè)
,則
,即
,由當直線
或
斜率不存在時,
點坐標為
或
也滿足此方程,所以點
在橢圓
上.存在點
和點
,使得
為定值,定值為
.
考點:圓錐曲線的定義,性質(zhì),方程.
【方法點晴】本題是對圓錐曲線的綜合應(yīng)用進行考查,第一問通過兩個特殊位置,得到基本量,
,得
,
,從而得橢圓的方程,第二問由題目分析如果存兩定點,則
點的軌跡是橢圓或者雙曲線 ,本題的關(guān)鍵是從這個角度出發(fā),把
坐標化,求得
點的軌跡方程是橢圓
,從而求得存在兩定點
和點
.
【題型】解答題
【結(jié)束】
21
【題目】已知,
,
.
(Ⅰ)若,求
的極值;
(Ⅱ)若函數(shù)的兩個零點為
,記
,證明:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com