11.拋物線y2=20x的焦點到準線的距離是(  )
A.5B.10C.15D.20

分析 利用拋物線的標準方程可得 p=10,由焦點到準線的距離為p,從而得到結果.

解答 解:拋物線y2=20x的焦點到準線的距離為p,由標準方程可得p=10,
故選:B.

點評 本題考查拋物線的標準方程,以及簡單性質的應用,判斷焦點到準線的距離為p是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知M={x|0<x<2},N={x|y=lg(x-1)},則M∩N=( 。
A.{x|0<x<2}B.{x|1<x<2}C.{x|x>0}D.{x|x≥1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,一個摩天輪的半徑為8m,每12min旋轉一周,最低點離地面為2m,若摩天輪邊緣某點P從最低點按逆時針方向開始旋轉,則點P離地面的距離h(m)與時間t(min)之間的函數(shù)關系是( 。
A.h=8cost+10B.h=-8cos$\frac{π}{3}$t+10C.h=-8sin$\frac{π}{6}$t+10D.h=-8cos$\frac{π}{6}$t+10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知直線2x+y-2=0經(jīng)過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的上頂點與右焦點,則橢圓的方程為( 。
A.$\frac{x^2}{5}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{9}+\frac{y^2}{4}=1$D.$\frac{x^2}{6}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設函數(shù)$f(x)={x^2}+\frac{1}{x+1},x∈[0,1]$.
(1)證明:$f(x)≥{x^2}-\frac{4}{9}x+\frac{8}{9}$;
(2)證明:$\frac{68}{81}<f(x)≤\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.橢圓$\frac{x^2}{m}+{y^2}=1$的離心率$e∈(\frac{1}{2},1)$,則m的取值范圍是$m>\frac{4}{3}$或$0<m<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)=2x2-lnx的遞增區(qū)間是( 。
A.$(0,\frac{1}{2})$B.$(-\frac{1}{2},0)$和$(\frac{1}{2},+∞)$C.$(\frac{1}{2},+∞)$D.$(-∞,-\frac{1}{2})$和$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.自主招生,是高校選拔錄取工作改革的重要環(huán)節(jié),通過高考自主招生筆試和面試之后,可以得到相應的高考降分政策;某高中高一學生共有1000人,其中城填初中畢業(yè)生750名(稱為“城填生“),農村初中畢業(yè)生250人(稱為“農村生“);為了摸清學生是否愿意參加自主招生,以便安排自主招生培訓,擬采用分層抽樣的方法抽取100名學生進行調查;
(1)試完成下列2×2聯(lián)表,并分析是否有95%以上的把握說“是否愿意參加自主招生“與生源有關.
愿意參加不愿意參加合計
城填生502575
農村生101525
合計6040100
(2)現(xiàn)對愿意參加自主招生的同學組織摸底考試,考試題共有5道題,每題20分,對于這5道題,考生“高富帥”完全會答的有3道,不完全會的有2道,不完全會的每道題她得分S的概率滿足:SKIPIF 1<0,假設解答各題之間沒有影響.
①對于一道不完全會的題,求“高富帥”得分的均值E(s);
②試求“高富帥”在本次摸底考試中總得分的數(shù)學期望.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.“數(shù)列{an}為等比數(shù)列”是“${a_{n+1}}^2={a_n}•{a_{n+2}}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案