13.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,且|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,則|$\overrightarrow{a}$-$\overrightarrow$|等于( 。
A.1B.$\sqrt{13}$C.13D.$\sqrt{7-2\sqrt{3}}$

分析 由向量數(shù)量積的定義可得$\overrightarrow{a}$•$\overrightarrow$,再由向量的模的平方即為向量的平方,計算即可得到所求值.

解答 解:向量$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,且|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,
可得$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|•cos30°=$\sqrt{3}$•2•$\frac{\sqrt{3}}{2}$=3,
則|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{(\overrightarrow{a}-\overrightarrow)^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow}^{2}-2\overrightarrow{a}•\overrightarrow}$
=$\sqrt{3+4-2×3}$=1.
故選:A.

點評 本題考查向量數(shù)量積的定義和性質(zhì),向量的平方即為模的平方,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a,b,c是三條不同的直線,命題:“a∥b且a⊥c⇒b⊥c”是真命題,如果把a,b,c中的兩條直線換成兩個平面,在所得3個命題中,真命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在平面直角坐標系中,點P為橢圓$\frac{{x}^{2}}{3}$+y2=1上的一個動點,則點P到直線x-y+6=0的最大距離為4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知空間四邊形OABC,M在AO上,滿足$\frac{AM}{MO}$=$\frac{1}{2}$,N是BC的中點,且$\overrightarrow{AO}$=$\overrightarrow{a}$,$\overrightarrow{AB}$=$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{c}$用a,b,c表示向量$\overrightarrow{MN}$為(  )
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$B.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$C.-$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$D.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,AD是角A的平分線.
(1)用正弦定理或余弦定理證明:$\frac{BD}{DC}=\frac{BA}{AC}$;
(2)已知AB=2.BC=4,$cosB=\frac{1}{4}$,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=ax3-2x的圖象過點P(-1,4),則曲線y=f(x)在點P處的切線方程為8x+y+4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.命題“?x0∈R,x${\;}_{0}^{2}$-2x0+1<0“的否定是?x∈R,x2-2x+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).以點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.
(Ⅰ)將曲線C和直線l化為直角坐標方程;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若全集為實數(shù)集R,f(x)、g(x)均為x的二次函數(shù),P={x|f(x)<0},Q={x|g(x)≤0},則不等式組$\left\{\begin{array}{l}f(x)<0\\ g(x)>0\end{array}\right.$的解集可用P、Q表示為P∩CIQ.

查看答案和解析>>

同步練習(xí)冊答案