【題目】解答題。
(1)求橢圓 的長(zhǎng)軸和短軸的長(zhǎng)、離心率、焦點(diǎn)和頂點(diǎn)的坐標(biāo).
(2)求焦點(diǎn)在y軸上,焦距是4,且經(jīng)過(guò)點(diǎn)M(3,2)的橢圓的標(biāo)準(zhǔn)方程.

【答案】
(1)解:∵橢圓方程為 ,

∴a=2,b=1,c= =

因此,橢圓的長(zhǎng)軸的長(zhǎng)和短軸的長(zhǎng)分別為2a=4,2b=2,

離心率e= = ,兩個(gè)焦點(diǎn)分別為F1(﹣ ,0),F(xiàn)2 ,0),

橢圓的四個(gè)頂點(diǎn)是A1(﹣2,0),A2(2,0),B1(0,﹣1),B2(0,1)


(2)解:由焦距是4可得c=2,且焦點(diǎn)坐標(biāo)為(0,﹣2),(0,2).

由橢圓的定義知:2a= + =8,

∴a=4,b2=a2﹣c2=16﹣4=12.

又焦點(diǎn)在y軸上,∴橢圓的標(biāo)準(zhǔn)方程為


【解析】(1)由橢圓方程為 ,可得a,b,c,即可得出;(2)利用橢圓的定義可得:a,即可得出b2=a2﹣c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|1≤x≤5},B={x|log2x>1}
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|2a﹣1≤x≤a+1},若CA,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩點(diǎn)A(2,3)、B(4,1),直線(xiàn)l:x+2y﹣2=0,在直線(xiàn)l上求一點(diǎn)P.
(1)使|PA|+|PB|最。
(2)使|PA|﹣|PB|最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果執(zhí)行如圖的程序框圖,若輸入n=6,m=4,那么輸出的p等于(
A.720
B.360
C.240
D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿(mǎn)足對(duì)于定義域內(nèi)任意的x1 , x2都有等式f(x1x2)=f(x1)+f(x2)成立.
(1)求f(1)的值.
(2)判斷f(x)的奇偶性并證明.
(3)若f(4)=1,且f(x)在(0,+∞)上是增函數(shù),解關(guān)于x的不等式f(3x+1)+f(﹣6)≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】種子發(fā)芽率與晝夜溫差有關(guān).某研究性學(xué)習(xí)小組對(duì)此進(jìn)行研究,他們分別記錄了3月12日至3月16日的晝夜溫差與每天100顆某種種子浸泡后的發(fā)芽數(shù),如下表:

(I)從3月12日至3月16日中任選2天,記發(fā)芽的種子數(shù)分別為c,d,求事件“c,d均不小于25”的概率;

(II)請(qǐng)根據(jù)3月13日至3月15日的三組數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程

(III)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與實(shí)際數(shù)據(jù)誤差均不超過(guò)2顆,則認(rèn)為回歸方程是可靠的,試用3月12日與16日的兩組數(shù)據(jù)檢驗(yàn),(II)中的回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省高考改革新方案,不分文理科,高考成績(jī)實(shí)行“”的構(gòu)成模式,第一個(gè)“3”是語(yǔ)文、數(shù)學(xué)、外語(yǔ),每門(mén)滿(mǎn)分150分,第二個(gè)“3”由考生在思想政治、歷史、地理、物理、化學(xué)、生物6個(gè)科目中自主選擇其中3個(gè)科目參加等級(jí)性考試,每門(mén)滿(mǎn)分100分,高考錄取成績(jī)卷面總分滿(mǎn)分750分.為了調(diào)查學(xué)生對(duì)物理、化學(xué)、生物的選考情況,將“某市某一屆學(xué)生在物理、化學(xué)、生物三個(gè)科目中至少選考一科的學(xué)生”記作學(xué)生群體,從學(xué)生群體中隨機(jī)抽取了50名學(xué)生進(jìn)行調(diào)查,他們選考物理,化學(xué),生物的科目數(shù)及人數(shù)統(tǒng)計(jì)如下表:

(I)從所調(diào)查的50名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率;

(II)從所調(diào)查的50名學(xué)生中任選2名,記表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)量之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(III)將頻率視為概率,現(xiàn)從學(xué)生群體中隨機(jī)抽取4名學(xué)生,記其中恰好選考物理、化學(xué)、生物中的兩科目的學(xué)生數(shù)記作,求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的圖象與y軸的交點(diǎn)為( ),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和最低點(diǎn)分別為(x0 , 3),(x0+2π,﹣3).
(1)求函數(shù)y=f(x)的解析式;
(2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到?
(3)求這個(gè)函數(shù)的單調(diào)遞增區(qū)間和對(duì)稱(chēng)中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)m是直線(xiàn)l: x﹣y+3=0與x軸的交點(diǎn),將直線(xiàn)l繞點(diǎn)m旋轉(zhuǎn)30°,求所得到的直線(xiàn)l′的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案