已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,焦距為2c;若以F2為圓心,b-c為半徑作圓F2,過橢圓上任一點(diǎn)P(x0,y0)作此圓的切線,切點(diǎn)為T,且|PT|的最小值不小于
3
2
(a-c).
(Ⅰ)證明:|PF2|的最小值為a-c;
(Ⅱ)求橢圓的離心率e的取值范圍;
(Ⅲ)若橢圓的短半軸長為1,圓F2與x軸的右交點(diǎn)為Q,過點(diǎn)Q作斜率為2的直線l與橢圓交于A、B兩點(diǎn),若OA⊥OB,求橢圓的方程.
分析:(Ⅰ)設(shè)橢圓上任一點(diǎn)Q的坐標(biāo)為(x0,y0),根據(jù)Q點(diǎn)到右準(zhǔn)線的距離和橢圓的第二定義,求得x0的范圍,進(jìn)而求得橢圓上的點(diǎn)到點(diǎn)F2的最短距離;
(Ⅱ)可先表示出|PT|,進(jìn)而可知當(dāng)且僅當(dāng)|PF2|取得最小值時(shí),|PT|取得最小值,從而可求橢圓的離心率e的取值范圍;
(Ⅲ)直線方程與橢圓方程聯(lián)立,利用韋達(dá)定理,及OA⊥OB,即可求出橢圓的方程.
解答:(Ⅰ)證明:設(shè)橢圓上任一點(diǎn)Q的坐標(biāo)為(x0,y0),
Q點(diǎn)到右準(zhǔn)線的距離為d=
a2
c
-x0,
則由橢圓的第二定義知:
|QF2|
d
=
c
a
,
∴|QF2|=a-
c
a
x0,又-a≤x0≤a,
∴當(dāng)x0=a時(shí),
∴|QF2|min=a-c.
(Ⅱ)解:依題意設(shè)切線長|PT|=
|PF2|2-(b-c)2

∴當(dāng)且僅當(dāng)|PF2|取得最小值時(shí)|PT|取得最小值,
(a-c)2-(b-c) 2
3
2
(a-c),
∴0<
b-c
a-c
1
2
,從而解得
3
5
≤e<
2
2

(Ⅲ)依題意Q點(diǎn)的坐標(biāo)為(1,0),則直線的方程為y=2(x-1),
與橢圓方程
x2
a2
+y2=1
聯(lián)立方程組,消去y得(4a2+1)x2-8a2x+3a2=0
設(shè)A(x1,y1)(x2,y2),則有x1+x2=
8a2
4a2+1
,x1x2=
3a2
4a2+1
,
代入直線方程得y1y2=
4-4a2
4a2+1
,
∵OA⊥OB,
∴x1x2+y1y2=0
3a2
4a2+1
+
4-4a2
4a2+1
=0
∴a=2
∴橢圓方程為
x2
4
+y2=1
點(diǎn)評:本題主要考查了直線與圓錐曲線的綜合問題,考查了學(xué)生綜合分析問題和解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若P是橢圓上的任意一點(diǎn),求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點(diǎn)M,N(均不是長軸的頂點(diǎn)),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F(-c,0)是長軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且不與y軸垂直的直線l交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為k1,k2
(1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線l⊥x軸時(shí),求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過點(diǎn)M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)m=-1時(shí),求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過右焦點(diǎn)做垂直于x軸的直線與橢圓相交于兩點(diǎn),且兩交點(diǎn)與橢圓的左焦點(diǎn)及右頂點(diǎn)構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點(diǎn),若N為AB的中點(diǎn),D為N在直線l上的射影,AB的中垂線與y軸交于點(diǎn)P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,過F作y軸的平行線交橢圓于M、N兩點(diǎn),若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案