2.如圖,△ABO是以∠O=120°為頂點(diǎn)的等腰三角形,點(diǎn)P在以AB為直徑的半圓內(nèi)(包括邊界),若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x、y∈R),則x2+y2的取值范圍是[$\frac{1}{2}$,2+$\sqrt{3}$].

分析 兩邊平方,得出|OP|2關(guān)于x,y的表達(dá)式,根據(jù)|OP|的范圍得出不等式組,利用基本不等式的性質(zhì)得出結(jié)論.

解答 解:設(shè)OA=OB=1,則$\overrightarrow{OA}•\overrightarrow{OB}$=-cos120°=-$\frac{1}{2}$,AB=$\sqrt{3}$,O到AB的距離為$\frac{1}{2}$,
∵$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,∴${\overrightarrow{OP}}^{2}$=x2${\overrightarrow{OA}}^{2}$+y2${\overrightarrow{OB}}^{2}$+2xy$\overrightarrow{OA}•\overrightarrow{OB}$=x2+y2-xy,
∵P在以AB為直徑的半圓內(nèi)(包括邊界),
∴$\frac{1}{2}$≤OP≤$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$,
∴$\frac{1}{4}$≤x2+y2-xy≤1+$\frac{\sqrt{3}}{2}$,
由圖可知x>0,y>0,∴xy≤$\frac{1}{2}$(x2+y2),
∴$\frac{1}{4}$≤$\frac{1}{2}$(x2+y2)≤1+$\frac{\sqrt{3}}{2}$,
∴$\frac{1}{2}$≤x2+y2≤2+$\sqrt{3}$.
故答案為:[$\frac{1}{2}$,2+$\sqrt{3}$].

點(diǎn)評(píng) 本題考查了平面向量的基本定理,數(shù)量積運(yùn)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知直線l與x軸不垂直,且直線l過點(diǎn)M(2,0)與拋物線y2=4x交于A,B兩點(diǎn),則$\frac{1}{{{{|{AM}|}^2}}}+\frac{1}{{{{|{BM}|}^2}}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若關(guān)于x的不等式2x3+3x2-12x+4≤$\frac{4m{e}^{x}+2x}{{e}^{x}}$在[-2,+∞)上有解,則實(shí)數(shù)m 的最小值為( 。
A.-$\frac{3}{4}$-$\frac{1}{e}$B.-$\frac{3}{4}$-$\frac{1}{2e}$C.-$\frac{4}{3}$-$\frac{1}{e}$D.-$\frac{4}{3}$-$\frac{1}{2e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=x2的圖象在點(diǎn)$({{x_0},{x_0}^2})$處的切線為m,若m也與函數(shù)y=lnx,x∈(0,1]的圖象相切,則x0必滿足(  )
A.$0<{x_0}<\frac{1}{2}$B.$\frac{1}{2}<{x_0}<1$C.$\frac{{\sqrt{2}}}{2}<{x_0}<\sqrt{2}$D.$\sqrt{2}<{x_0}<\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C的兩焦點(diǎn)為F1(-2$\sqrt{2}$,0),F(xiàn)2(2$\sqrt{2}$,0),離心率e=$\frac{\sqrt{6}}{3}$.
(1)求此橢圓C的方程;
(2)過點(diǎn)M(0,t)的直線l(斜率存在時(shí))與橢圓C交于P,Q兩點(diǎn),設(shè)D為橢圓C與y軸負(fù)半軸的交點(diǎn),且|$\overrightarrow{DP}$|=|$\overrightarrow{DQ}$|.求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合M={x|x≥0},N={x|x2<1},則M∩N=( 。
A.[0,1]B.[0,1)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若復(fù)數(shù)$\frac{a+2i}{1+i}$(a∈R,i是虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a的值為( 。
A.-2B.-6C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$sin2A=\sqrt{3}cos2A$,且角A為銳角.
(1)求三角形內(nèi)角A的大;
(2)若a=5,b=8,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.有兩個(gè)不透明的箱子,每個(gè)箱子都裝有4個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字1、2、3、4,甲從其中一個(gè)箱子中摸出一個(gè)球,乙從另一個(gè)箱子摸出一個(gè)球,誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),則甲獲勝的概率為(  )
A.$\frac{4}{9}$B.$\frac{3}{4}$C.$\frac{5}{8}$D.$\frac{3}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案