已知函數(shù)f(x)=x2-2ax+2在區(qū)間[-1,1]的最小值是-1,求a的值.
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:二次函數(shù)的對(duì)稱軸為x=a,分當(dāng)a<-1 時(shí)、當(dāng)-1≤a≤1時(shí)、當(dāng)a>1時(shí)三種情況,分別根據(jù)函數(shù)在區(qū)間[-1,1]的最小值是-1,求得a的值.
解答: 解:∵已知函數(shù)f(x)=x2-2ax+2=(x-a)2+2-a2 在區(qū)間[-1,1]的最小值是-1,
當(dāng)a<-1 時(shí),函數(shù)在區(qū)間[-1,1]上是增函數(shù),
故有1+2a+2=-1,解得 a=-2.
當(dāng)-1≤a≤1時(shí),則x=a時(shí),函數(shù)取得最小值為a2-2a2+2=-1,解得a=±
3
(舍去).
當(dāng)a>1時(shí),數(shù)在區(qū)間[-1,1]上是減函數(shù),故有1-2a+2=-1,解得 a=2.
綜上可得,a=±2.
點(diǎn)評(píng):本題主要考查求二次函數(shù)在閉區(qū)間上的最值,求函數(shù)的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程x2+(m-2+2i)x+mi=1(m∈R)有實(shí)根,則實(shí)根x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3+ax2-a2x+2.
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)M(1,f(1))處的切線方程;
(Ⅱ)若a>0,求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)小自來(lái)水廠,蓄水池中有水450噸,水廠每小時(shí)可向蓄水池中注水80噸,同時(shí)蓄水池又向居民小區(qū)供水,t小時(shí)內(nèi)供水總量為80
2t
噸,現(xiàn)在開(kāi)始向池中注水并同時(shí)向居民小區(qū)供水.若蓄水池中存水量少于150噸時(shí),就會(huì)出現(xiàn)供水緊張現(xiàn)象,問(wèn)24小時(shí)內(nèi)有幾個(gè)小時(shí)供水緊張?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程:
310-x
+
325+x
=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單位向量
m
n
的夾角為60°,
(1)試判斷2
n
-
m
m
的關(guān)系并證明;
(2)求
n
n
+
m
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)lg(0.1)3
(2)log26-log23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x+
1
x+1
(x>-1)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=(x-a)|x-a|+b(a,b都是實(shí)數(shù)).則下列敘述中,正確的序號(hào)是
 
.(請(qǐng)把所有敘述正確的序號(hào)都填上)
①對(duì)任意實(shí)數(shù)a,b,函數(shù)y=f(x)在R上是單調(diào)函數(shù);
②存在實(shí)數(shù)a,b,函數(shù)y=f(x)在R上不是單調(diào)函數(shù);
③對(duì)任意實(shí)數(shù)a,b,函數(shù)y=f(x)的圖象都是中心對(duì)稱圖形;
④存在實(shí)數(shù)a,b,使得函數(shù)y=f(x)的圖象都不是中心對(duì)稱圖形.

查看答案和解析>>

同步練習(xí)冊(cè)答案