已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=an3n(x∈R).求數(shù)列{bn}前n項(xiàng)和的公式.
【答案】分析:(I)利用等菜數(shù)列的通項(xiàng)公式將已知等式用公差表示,列出方程求出公差,利用等差數(shù)列的通項(xiàng)公式求出通項(xiàng).
(II)由于數(shù)列的通項(xiàng)是一個等差數(shù)列與一個等比數(shù)列的乘積,利用錯位相減法求前n項(xiàng)和.
解答:解:(Ⅰ)設(shè)數(shù)列{an}公差為d,則 a1+a2+a3=3a1+3d=12,又a1=2,d=2.所以an=2n.
(Ⅱ)由bn=an3n=2n3n,得   
 Sn=2•3+4•32+…(2n-2)3n-1+2n•3n,①
3Sn=2•32+4•33+…+(2n-2)•3n+2n•3n+1.②
將①式減去②式,得
-2Sn=2(3+32+…+3n)-2n•3n+1=-3(3n-1)-2n•3n+1
所以
點(diǎn)評:求數(shù)列的前n項(xiàng)和時(shí),首先判斷數(shù)列的通項(xiàng)的特點(diǎn),然后選擇合適的方法求和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義一個“等積數(shù)列”:在一個數(shù)列中,如果每一項(xiàng)與它后一項(xiàng)的積都是同一常數(shù),那么這個數(shù)列叫“等積數(shù)列”,這個常數(shù)叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,則這個數(shù)列的前n項(xiàng)和Sn的計(jì)算公式為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個數(shù)列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,k叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“等積數(shù)列”:在一個數(shù)列中,如果每一個項(xiàng)與它的后一項(xiàng)的積都為同一個常數(shù),那末這個數(shù)列叫做等積數(shù)列,這個常數(shù)叫做該數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,Tn為數(shù)列{an}前n項(xiàng)的積,則T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們對數(shù)列作如下定義,如果?n∈N*,都有anan+1an+2=k(k為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,k叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=2,公積為6,則a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列的定義為:在一個數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個常數(shù),那么這個數(shù)列叫做等差數(shù)列,這個常數(shù)叫做該數(shù)列的公差.
(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個數(shù)列的通項(xiàng)公式(不要求證明).

查看答案和解析>>

同步練習(xí)冊答案