18.若tanβ=2tanα,且cosαsinβ=$\frac{2}{3}$,則sin(α-β)的值為-$\frac{1}{3}$.

分析 由題意利用同角三角函數(shù)的基本關(guān)系求得 2sinαcosβ=cosαsinβ,再根據(jù)cosαsinβ=$\frac{2}{3}$,求得 sinαcosβ的值,利用兩角差的正弦公式求得sin(α-β)的值.

解答 解:∵tanβ=2tanα,即$\frac{sinβ}{cosβ}$=2$\frac{sinα}{cosα}$,
∴2sinαcosβ=cosαsinβ.
∵cosαsinβ=$\frac{2}{3}$,∴sinαcosβ=$\frac{1}{3}$,則sin(α-β)=sinαcosβ-cosαsinβ=$\frac{1}{3}$-$\frac{2}{3}$=-$\frac{1}{3}$,
故答案為:$-\frac{1}{3}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=3cos(2x-$\frac{π}{3}$),則下列結(jié)論正確的是( 。
A.導(dǎo)函數(shù)為$f'(x)=-3sin(2x-\frac{π}{3})$
B.函數(shù)f(x)的圖象關(guān)于直線$x=\frac{2π}{3}$對稱
C.函數(shù)f(x)在區(qū)間(-$\frac{π}{12}$,$\frac{5π}{12}$)上是增函數(shù)
D.函數(shù)f(x)的圖象可由函數(shù)y=3co s2x的圖象向右平移$\frac{π}{3}$個單位長度得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知p:-x2-2x+8≥0,q:x2-2x+1-m2≤0(m>0).
(1)若p是q的充分條件,求實數(shù)m的取值范圍;
(2)若“¬p”是“¬q”的充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2asin?xcos?x+2$\sqrt{3}$cos2?x-$\sqrt{3}$(a>0,?>0)的最大值為2,且最小正周期為π.
(1)求函數(shù)f(x)的解析式及期對稱軸方程;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若隨機地從1,2,3,4,5五個數(shù)中選出兩個數(shù),則這兩個數(shù)恰好為一奇一偶的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1在矩陣A=$[\begin{array}{l}{\frac{1}{3}}&{0}\\{0}&{\frac{1}{2}}\end{array}]$對應(yīng)的變換作用下所得的曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|x2-2x-8≤0},B={x|$\frac{x-6}{x+1}$<0},U=R.
(1)求A∪B;     
(2)求(∁UA)∩B;
(3)如果C={x|x-a>0},且A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=kx2-kx,g(x)=$\left\{\begin{array}{l}lnx,x≥1\\-{x^3}+({a+1}){x^2}-ax,0<x<1\end{array}$,若使得不等式f(x)≥g(x)對一切正實數(shù)x恒成立的實數(shù)k存在且唯一,則實數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義函數(shù)y=f(x),x∈D,若存在常數(shù)C,對于任意的x1∈D,存在唯一的x2∈D,使$\frac{f({x}_{1})+f({x}_{2})}{2}$=C,則稱函數(shù)f(x)在D上的“均值”為C,已知f(x)=log2x,x∈[2,8],則函數(shù)f(x)在[2,8]上的“均值”為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案