a,b∈{-2,-1,1,2}
(1)求y=ax+b傾斜角為銳角的概率.
(2)求直線y=ax+b與圓x2+y2=1有公共點的概率.
考點:古典概型及其概率計算公式,直線的斜率,直線與圓的位置關(guān)系
專題:概率與統(tǒng)計
分析:(1)由題意知本題是一個古典概型,試驗包含的所有事件是用集合{-2,-1,1,2}的元素做為直線的斜率和截距,共有含有4×4個等可能基本事件,滿足條件的事件中含有8個基本事件,根據(jù)古典概型公式得到結(jié)果.
(2)由題意知本題是一個古典概型,試驗發(fā)生包含的所有事件總數(shù)為16,滿足條件的事件可以通過列舉得到事件數(shù),根據(jù)古典概型公式得到結(jié)果.
解答: 解:(1)∵a,b∈{-2,-1,1,2},
則y=ax+b的斜率和截距(a,b)共有16種情況,分別為:
(-2,-2),(-2,-1),(-2,1),(-2,2),
(-1,-2),(-1,-1),(-1,1),(-1,2),
(1,-2),(1,-1),(1,1),(1,2),
(2,-2),(2,-1),(2,1),(2,2),
若y=ax+b傾斜角為銳角,則a>0,滿足條件的情況有8種,分別為:
(1,-2),(1,-1),(1,1),(1,2),
(2,-2),(2,-1),(2,1),(2,2),
故y=ax+b傾斜角為銳角的概率P=
8
16
=
1
2
;
(2)若直線y=ax+b與圓x2+y2=1沒有公共點,
則圓心(0,0)到直線y=ax+b的距離d=
|b|
a2+1
>1,
滿足條件的情況有4種,分別為:
(-1,-2),(-1,2),(1,-2),(1,2),
故直線y=ax+b與圓x2+y2=1有公共點的概率P=
4
16
=
1
4
點評:本題是一個古典概型問題,這種問題在高考時可以作為文科的一道解答題,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題可以列舉出所有事件.是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx-x+2的零點所在的區(qū)間為( 。
A、(4,5)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:已知sin(x+
π
6
)=
1
4
,求sin(
6
+x)+sin(
11π
6
-x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3-
1
2
ax2+(a-1)x,
(1)當(dāng)a=1時,求曲線y=f(x)在點(0,0)處的切線方程;
(2)當(dāng)a為何值時,函數(shù)y=f(x)有極值?并求出極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,函數(shù)f(x)=ax3-3x2
(Ⅰ)若x=2是函數(shù)y=f(x)的極值點,求a的值;
(Ⅱ)設(shè)函數(shù)g(x)=f(x)+f′(x),若g(x)≤0對一切x∈(0,2]都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+1在x=-1與x=2處有極值.
(1)求函數(shù)f(x)的解析式;    
(2)求f(x)在[-2,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一支游泳隊有男運(yùn)動元32人,女運(yùn)動員24人,若用分層抽樣的方法從該隊的全體運(yùn)動員中抽取一個容量為14的樣本,則抽取男運(yùn)動員的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次數(shù)學(xué)考試中,其中一個小組的成績是:55,89,69,73,81,56,90,74,82.試畫一個程序框圖:程序中用S(i)表示第i個學(xué)生的成績,先逐個輸入S(i)( i=1,2,…),然后從這些成績中搜索出小于75的成績.(注意:要求程序中必須含有循環(huán)結(jié)構(gòu))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知曲線C1:ρ=(
3
+1)sinθ和曲線C2:ρ=
2
cos(θ-
π
4
),則經(jīng)過曲線C1,C2交點的直線的極坐標(biāo)方程為
 

查看答案和解析>>

同步練習(xí)冊答案