如圖,把長、寬分別為4、3的長方形ABCD沿對角線AC折成直二面角.
(Ⅰ)求頂點B和D之間的距離;
(Ⅱ)現(xiàn)發(fā)現(xiàn)BC邊上距點C的
13
處有一缺口E,請過點E作一截面,將原三棱錐分割成一個三棱錐和一個棱臺兩部分,為使截去部分體積最小,如何作法?請證明你的結論.
分析:(Ⅰ)在△ABC中,過B作BO⊥AC,垂足為O,連接OD,利用面面垂直,可得BO⊥OD,進而利用Rt△BOD中,BO=
12
5
,OD=
193
5
,可求BD=
337
5

(Ⅱ)兩種方案:方案(一)過E作EF∥AC交AB于F,EG∥CD,交BD于G,可知平面EFG∥平面ACD,從而可求原三棱錐被分成三棱錐B-EFG和三棱臺EFG-CAD兩部分體積比;方案(二)過E作EP∥BD交CD于P,EQ∥AB,交AC于Q,同(一)可證平面EPQ∥平面ABD,原三棱錐被分割成三棱錐C-EPQ和三棱臺EPQ-BDA兩部分體積比,從而可確定方案.
解答:解:(Ⅰ)在△ABC中,過B作BO⊥AC,垂足為O,連接OD
面ABC⊥面ACD
BO?面ABC
面ABC∩面ACD=AC
 
BO⊥面ACD
OD?面ACD

∴BO⊥OD
由已知BO=
12
5
,OD=
193
5
在Rt△BOD中,BD=
337
5

(Ⅱ)方案(一)過E作EF∥AC交AB于F,EG∥CD,交BD于G,
EF∥AC
EF?面ACD
AC?面ACD
⇒EF∥面ACD


∵EG∥平面ACD,
EF∩EG=E

∴平面EFG∥平面ACD
原三棱錐被分成三棱錐B-EFG和三棱臺EFG-CAD兩部分,此時
VB-EFG
VB-ACD
=(
2
3
)3=
8
27

方案(二)過E作EP∥BD交CD于P,EQ∥AB,交AC于Q,同(一)可證平面EPQ∥平面ABD,原三棱錐被分割成三棱錐C-EPQ和三棱臺EPQ-BDA兩部分,此時
VC-EPQ
VC-BDA
=(
1
3
)3=
1
27

為使截去部分體積最小,
故選用方案(二).
點評:本題以平面圖形的翻折為載體,考查面面垂直的性質,考查幾何體的體積,考查學生分析解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD內,兩個圓M、N分別與矩形兩邊相切,且兩圓互相外切.若矩形的長和寬分別為9和8,試把兩個圓的面積之和S表示為圓M半徑x的函數(shù)關系式,并求S的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,把長、寬分別為4、3的長方形ABCD沿對角線AC折成直二面角.
精英家教網(wǎng)
(Ⅰ)求三棱錐B-ACD的體積VB-ACD;
(Ⅱ)現(xiàn)發(fā)現(xiàn)BC邊上距點C的
13
處有一缺口E,請過點E作一截面,將原三棱錐分割成一個三棱錐和一個棱臺兩部分,為使截去部分體積最小,如何作法?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇省模擬題 題型:解答題

如圖,把長、寬分別為4、3的長方形ABCD沿對角線AC折成直二面角.
(Ⅰ)求頂點B和D之間的距離;
(Ⅱ)現(xiàn)發(fā)現(xiàn)BC邊上距點C的處有一缺口E,請過點E作一截面,將原三棱錐分割成一個三棱錐和一個棱臺兩部分,為使截去部分體積最小,如何作法?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省無錫市濱湖區(qū)高考數(shù)學模擬試卷(解析版) 題型:解答題

如圖,把長、寬分別為4、3的長方形ABCD沿對角線AC折成直二面角.
(Ⅰ)求頂點B和D之間的距離;
(Ⅱ)現(xiàn)發(fā)現(xiàn)BC邊上距點C的處有一缺口E,請過點E作一截面,將原三棱錐分割成一個三棱錐和一個棱臺兩部分,為使截去部分體積最小,如何作法?請證明你的結論.

查看答案和解析>>

同步練習冊答案