精英家教網 > 高中數學 > 題目詳情
如圖,把長、寬分別為4、3的長方形ABCD沿對角線AC折成直二面角.
(Ⅰ)求頂點B和D之間的距離;
(Ⅱ)現發(fā)現BC邊上距點C的處有一缺口E,請過點E作一截面,將原三棱錐分割成一個三棱錐和一個棱臺兩部分,為使截去部分體積最小,如何作法?請證明你的結論.

【答案】分析:(Ⅰ)在△ABC中,過B作BO⊥AC,垂足為O,連接OD,利用面面垂直,可得BO⊥OD,進而利用Rt△BOD中,BO=,OD=,可求BD=
(Ⅱ)兩種方案:方案(一)過E作EF∥AC交AB于F,EG∥CD,交BD于G,可知平面EFG∥平面ACD,從而可求原三棱錐被分成三棱錐B-EFG和三棱臺EFG-CAD兩部分體積比;方案(二)過E作EP∥BD交CD于P,EQ∥AB,交AC于Q,同(一)可證平面EPQ∥平面ABD,原三棱錐被分割成三棱錐C-EPQ和三棱臺EPQ-BDA兩部分體積比,從而可確定方案.
解答:解:(Ⅰ)在△ABC中,過B作BO⊥AC,垂足為O,連接OD

∴BO⊥OD
由已知BO=,OD=在Rt△BOD中,BD=
(Ⅱ)方案(一)過E作EF∥AC交AB于F,EG∥CD,交BD于G,



∴平面EFG∥平面ACD
原三棱錐被分成三棱錐B-EFG和三棱臺EFG-CAD兩部分,此時
方案(二)過E作EP∥BD交CD于P,EQ∥AB,交AC于Q,同(一)可證平面EPQ∥平面ABD,原三棱錐被分割成三棱錐C-EPQ和三棱臺EPQ-BDA兩部分,此時
為使截去部分體積最小,
故選用方案(二).
點評:本題以平面圖形的翻折為載體,考查面面垂直的性質,考查幾何體的體積,考查學生分析解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在矩形ABCD內,兩個圓M、N分別與矩形兩邊相切,且兩圓互相外切.若矩形的長和寬分別為9和8,試把兩個圓的面積之和S表示為圓M半徑x的函數關系式,并求S的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,把長、寬分別為4、3的長方形ABCD沿對角線AC折成直二面角.
(Ⅰ)求頂點B和D之間的距離;
(Ⅱ)現發(fā)現BC邊上距點C的
13
處有一缺口E,請過點E作一截面,將原三棱錐分割成一個三棱錐和一個棱臺兩部分,為使截去部分體積最小,如何作法?請證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,把長、寬分別為4、3的長方形ABCD沿對角線AC折成直二面角.
精英家教網
(Ⅰ)求三棱錐B-ACD的體積VB-ACD;
(Ⅱ)現發(fā)現BC邊上距點C的
13
處有一缺口E,請過點E作一截面,將原三棱錐分割成一個三棱錐和一個棱臺兩部分,為使截去部分體積最小,如何作法?請證明你的結論.

查看答案和解析>>

科目:高中數學 來源:江蘇省模擬題 題型:解答題

如圖,把長、寬分別為4、3的長方形ABCD沿對角線AC折成直二面角.
(Ⅰ)求頂點B和D之間的距離;
(Ⅱ)現發(fā)現BC邊上距點C的處有一缺口E,請過點E作一截面,將原三棱錐分割成一個三棱錐和一個棱臺兩部分,為使截去部分體積最小,如何作法?請證明你的結論.

查看答案和解析>>

同步練習冊答案