10.如圖是一個幾何體的三視圖,其中俯視圖中的曲線為四分之一圓,則該幾何體的表面積為( 。
A.3B.$3+\frac{π}{2}$C.4D.$4-\frac{π}{2}$

分析 由已知可得該幾何體是一個以俯視圖這底面的柱體,根據(jù)柱體表面積公式,可得答案.

解答 解:由已知可得該幾何體是一個以俯視圖這底面的柱體,
底面積為1-$\frac{π}{4}$,底面周長為:2+$\frac{π}{2}$,
柱體的高為1,
故該幾何體的表面積S=2×(1-$\frac{π}{4}$)+2+$\frac{π}{2}$=4,
故選:C

點評 本題考查的知識點是柱體的體積和表面積計算,根據(jù)已知中的三視圖,分析出幾何體的形狀,是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.等差數(shù)列{an}中,a2+a6=14,則S7=49.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知直線l1:(m+3)x+4y=5和l2:2x+(m+5)y=8,當l1⊥l2時,求實數(shù)m的值$-\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.為了解某一段公路汽車通過時的車速情況,現(xiàn)隨機抽測了通過這段公路的200輛汽車的時速,所得數(shù)據(jù)均在區(qū)間[40,80]中,其頻率分布直方圖如圖所示,則在抽測的200輛汽車中,時速在區(qū)間[40,60)內(nèi)的汽車有80輛.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)y=f(x)(x∈R)滿足:對一切x∈R,f(x)>0,f(x+1)=$\sqrt{7-{f}^{2}(x)}$時,當x∈[0,1)時,f(x)=$\left\{\begin{array}{l}{x+2(0≤x<\sqrt{5}-2)}\\{\sqrt{5}(\sqrt{5}-2≤x<1)}\end{array}\right.$,則f(2017-$\sqrt{3}$)=( 。
A.2$\sqrt{2\sqrt{3}-3}$B.2-$\sqrt{3}$C.2$+\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.將函數(shù)f(x)=sin(3x+φ)(0<φ<π)的圖象向右平移$\frac{π}{12}$個單位后,所得圖象關于y軸對稱,則φ的值為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設函數(shù)f(x)=x-sinx,則函數(shù)f(x)在R上( 。
A.是有零點的減函數(shù)B.是沒有零點的奇函數(shù)
C.既是奇函數(shù)又是減函數(shù)D.既是奇函數(shù)又是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設f(x)為定義在R上的偶函數(shù),但x≥0時,y=f(x)的圖象是頂點在P(3,4),且過點A(2,2)的拋物線的一部分.
(1)求函數(shù)f(x)在(-∞,0)上的解析式;
(2)求函數(shù)f(x)在R上的解析式,并畫出函數(shù)f(x)的圖象;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,已知一座山高BC=80米,為了測量另一座山高MN,和兩山頂之間的距離CM,在A點測得M點的仰角∠MAN=60°,C點的仰角∠BAC=30°,C、M兩點的張角∠MAC=60°,從C點測得∠ACM=75°,則MN與CM分別等于多少米( 。
A.40(3+$\sqrt{3}$),140$\sqrt{2}$B.40(3+$\sqrt{3}$),80$\sqrt{6}$C.60($\sqrt{2}$+$\sqrt{3}$),140$\sqrt{2}$D.60($\sqrt{2}$+$\sqrt{3}$),80$\sqrt{6}$

查看答案和解析>>

同步練習冊答案