在△ABC中,角A、B、C的對邊分別為a、b、c,已知A=
π
3
,a=
3
,b=1,則c=(  )
A、1
B、2
C、
3
-1
D、
3
分析:方法一:可根據(jù)余弦定理直接求,但要注意邊一定大于0;
方法二:可根據(jù)正弦定理求出sinB,進而求出c,要注意判斷角的范圍.
解答:解:解法一:(余弦定理)由a2=b2+c2-2bccosA得:
3=1+c2-2c×1×cos
π
3
=1+c2-c,∴c2-c-2=0,∴c=2或-1(舍).
解法二:(正弦定理)由
a
sinA
=
b
sinB
,得:
3
sin
π
3
=
1
sinB

∴sinB=
1
2
,
∵b<a,∴B=
π
6
,從而C=
π
2
,
∴c2=a2+b2=4,∴c=2.
點評:本題主要考查正弦定理和余弦定理的應用.在解三角形時一般就用這兩個定理,要熟練掌握.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案