如圖所示:在底面為直角梯形的四棱錐S-ABCD中,∠ABC=90°,SA⊥面ABCD,E、F分別為SA、SC的中點(diǎn).如果AB=BC=2,AD=1,SB與底面ABCD成60°角.
(1)求四棱錐S-ABCD的體積;
(2)求異面直線EF與CD所成角的大。ㄓ梅慈切问奖硎荆

【答案】分析:(1)根據(jù)題意求出高,代入棱錐的體積公式運(yùn)算求得結(jié)果.
(2)由于EF和AC平行且相等,則∠ACD即為異面直線EF與CD所成角,由余弦定理可得
從而得到異面直線EF與CD成的角.
解答:解:(1)由于SA⊥平面ABCD,所以∠SBA即為斜線SB與底面ABCD所成角60°.
計(jì)算得:,所以=
(2)連接AC,由于EF和AC平行且相等,則∠ACD即為異面直線EF與CD所成角.
計(jì)算得:AC=2,CD=,由余弦定理可得 1=8+5-4cos∠ACD,,
所以異面直線EF與CD成角.
點(diǎn)評(píng):本題考查求棱錐的體積,異面直線所成的角的定義和求法,找出兩異面直線所成的角,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),點(diǎn)F在線段AA1上,當(dāng)AF=
a或2a
a或2a
時(shí),CF⊥平面B1DF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=
15
,AA1=6,E,F(xiàn)分別為AA1與BC1的中點(diǎn).
(1)求證:EF∥底面ABC;
(2)求平面EBC1與底面ABC所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆浙江省高三6月考前沖刺卷數(shù)學(xué)理 題型:填空題

如圖所示,在直三棱柱ABC-A1B1C1中,底面為直角三角形,∠ACB=90°,AC=,BC=CC1=1,P是BC1上一動(dòng)點(diǎn),則的最小值是_____.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABCA1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,DA1C1的中點(diǎn),點(diǎn)E在棱AA1上,要使CE⊥平面B1DE,則AE=_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年重慶八中高三(下)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,,AA1=6,E,F(xiàn)分別為AA1與BC1的中點(diǎn).
(1)求證:EF∥底面ABC;
(2)求平面EBC1與底面ABC所成的銳二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案