4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x≥1}\\{f(2-x),x<1}\end{array}\right.$,則不等式f(x)>2的解集是(-∞,-1)∪(3,+∞).

分析 根據(jù)分段函數(shù)的表達(dá)式,分別討論x≥1和x<1,進(jìn)行求解即可.

解答 解:若x≥1,由f(x)>2得log2(x+1)>2,得x+1>4,即x>3.
若x<1,則-x>-1,2-x>1,則由f(x)>2得f(2-x)>2,
即log2(2-x+1)>2,得log2(3-x)>2,得3-x>4,即x<-1.
綜上不等式的解為x>3或x<-1,
即不等式的解集為(-∞,-1)∪(3,+∞),
故答案為:(-∞,-1)∪(3,+∞)

點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)分段函數(shù)的表達(dá)式分別進(jìn)行討論求解是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,1),$\overrightarrow{u}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{v}$=2$\overrightarrow{a}$-$\overrightarrow$.
(Ⅰ)當(dāng)$\overrightarrow{u}$∥$\overrightarrow{v}$時(shí),求x的值;
(Ⅱ)當(dāng)$\overrightarrow{u}$⊥$\overrightarrow{v}$時(shí)且x<0時(shí),求向量$\overrightarrow{a}$與$\overrightarrow$的夾角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐S-ABCD中,底面ABCD為矩形,SA⊥平面ABCD,AB=1,AD=AS=2,P是棱SD上一點(diǎn),且$SP=\frac{1}{2}PD$.
(1)求直線AB與CP所成角的余弦值;
(2)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直角梯形ABCD中,AB∥CD,∠A=$\frac{π}{2}$,AD=1,AB=2CD=4,E為AB中點(diǎn),將△ADE沿直線DE折起到△A1DE,使得A1在平面EBCD上的射影H在直線CD上.
(Ⅰ)求證:平面A1EC⊥平面A1DC;
(Ⅱ)求平面DEA1與平面A1BC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=x|x2-a|,若存在x∈[1,2],使得f(x)<2,則實(shí)數(shù)a的取值范圍是(-1,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在正四棱柱ABCD-A1B1C1D1中,底面邊長(zhǎng)為1,C1B與底面ABCD所成的角的大小為arctan2,如果平面BD1C1與底面ABCD所成的二面角是銳角,求出此二面角的大。ńY(jié)果用反三角函數(shù)值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,則max{2x+1,x-2y+5}的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=$\left\{{\begin{array}{l}{x-\frac{1}{x}+1,x≥1}\\{{x^2},x<1}\end{array}}$,則f(f(-1))=1;函數(shù)f(x)在區(qū)間[-2,2]上的值域是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x>1}\\{-x-2,x≤1}\end{array}\right.$
(1)比較f(1)與f(2)的大小關(guān)系;
(2)求不等式f(x)>$\frac{1}{2}$的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案