【題目】已知函數(shù)f(x)= (x≠1)
(1)證明f(x)在(1,+∞)上是減函數(shù);
(2)令g(x)=lnf(x),判斷g(x)=lnf(x)的奇偶性并加以證明.
【答案】
(1)證明: ,設x1>x2>1,則:
= ;
∵x1>x2>1;
∴x2﹣x1<0,x1﹣1>0,x2﹣1>0;
∴ ;
∴f(x1)<f(x2);
∴f(x)在(1,+∞)上是減函數(shù)
(2)解: ;
∴ ;
解 得,x<﹣1,或x>1;
;
∴g(x)為奇函數(shù)
【解析】(1)分離常數(shù)得到 ,根據(jù)減函數(shù)的定義,設任意的x1>x2>1,然后作差,通分,證明f(x1)<f(x2)即得出f(x)在(1,+∞)上是減函數(shù);(2)先求出 ,然后求g(x)的定義域,并根據(jù)對數(shù)的運算求出g(﹣x)=﹣g(x),這樣便得出g(x)為奇函數(shù).
【考點精析】認真審題,首先需要了解函數(shù)單調(diào)性的判斷方法(單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較),還要掌握函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ax2﹣3x.
(1)若a=4時,求f(x)在x∈[1,4]上的最大值和最小值;
(2)若f(x)在x∈[2,+∞]上是增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知具有相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:
(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計當時, 的值;
(3)將表格中的數(shù)據(jù)看作五個點的坐標,則從這五個點中隨機抽取2個點,求這兩個點都在直線的右下方的概率.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=8x的焦點為F,準線為l,P是l上一點,Q是直線PF與C的一個交點,若 =3 ,則|QF|= , 點Q的坐標為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大;
(2)若a=2,b= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)短軸的兩個頂點與右焦點的連線構(gòu)成等邊三角形,橢圓C上任意一點到橢圓左右兩個焦點的距離之和為4.
(1)求橢圓C的方程;
(2)橢圓C與X軸負半軸交于點A,直線過定點(﹣1,0)交橢圓于M,N兩點,求△AMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列幾個命題:
①函數(shù)y= + 是偶函數(shù),但不是奇函數(shù);
②方程x2+(a﹣3)x+a=0的有一個正實根,一個負實根,則a<0;
③f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=2x2+x﹣1,則x≥0時,f(x)=﹣2x2+x+1
④函數(shù)y= 的值域是(﹣1, ).
其中正確命題的序號有 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 為正方形, 為直角梯形, ,平面平面,且.
(1)若和延長交于點,求證: 平面;
(2)若為邊上的動點,求直線與平面所成角正弦值的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com