若O為△ABC所在平面內(nèi)一點,且滿足數(shù)學公式,則△ABC的形狀為________.

等腰三角形
分析:利用向量的運算法則將等式中的向量 用三角形的各邊對應的向量表示,得到邊的關系,得出三角形的形狀.
解答:∵
=
=
==0,

∴△ABC為等腰三角形.
故答案為:等腰三角形
點評:此題考查了三角形形狀的判斷,涉及的知識有:平面向量加減的平行四邊形法則,平面向量的數(shù)量積運算,平面向量模的運算,以及等腰三角形的判定方法,熟練掌握平面向量的數(shù)量積運算法則是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若∠B=60°,O為△ABC的外心,點P在△ABC所在的平面上,
OP
=
OA
+
OB
+
OC
,且
BP
BC
=8,則邊AC上的高h的最大值為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇省南通市通州區(qū)2012屆高三4月查漏補缺專項檢測數(shù)學試題 題型:022

已知△ABC中,∠B=60°,O為△ABC的外心,若點P在△ABC所在的平面上,,且·=8,則邊AC上的高h的最大值為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若∠B=60°,O為△ABC的外心,點P在△ABC所在的平面上,數(shù)學公式=數(shù)學公式+數(shù)學公式+數(shù)學公式,且數(shù)學公式數(shù)學公式=8,則邊AC上的高h的最大值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省常州中學高三最后沖刺綜合練習數(shù)學試卷6(文科)(解析版) 題型:解答題

若∠B=60°,O為△ABC的外心,點P在△ABC所在的平面上,=++,且=8,則邊AC上的高h的最大值為   

查看答案和解析>>

同步練習冊答案