(理)已知向量||=1,||=2,=+,⊥,則與的夾角大小為
- A.
- B.
- C.
- D.
D
分析:由題意可得
=0,推出
=-
,由此求得
=-
=-1=|
||
|cosθ,求得cosθ的值,即可得到θ的值.
解答:∵
⊥
,則
=0,即(
)•
=0,即
=-
.
∴
=-
=-1,即|
||
|cosθ=-1.
∴cosθ=-
=-
,∴θ=
.
故選 D.
點評:本題主要考查兩個向量的數(shù)量積的定義,兩個向量垂直的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
(理)已知向量
=(1,1),向量
和向量
的夾角為
,|
|=
,
•
=-1.
(1)求向量
;
(2)若向量
與向量
=(1,0)的夾角為
,向量
=(cosA,
2cos2),其中A、B、C為△ABC的內(nèi)角a、b、c為三邊,b
2+ac=a
2+c
2,求|
+
|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(理) 已知向量
=(2cosφ,2sinφ),
φ∈(,π),向量
=(0,-1),則向量
與
的夾角為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(理) 已知向量
=(2,-1,3),
=(-1,4,-2),
=(7,0,λ),若
、
、
三個向量共面,則實數(shù)λ=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(理)已知向量
=(3,5,-1),
=(2,2,3),
=(4,-1,-3),則向量
2-3+4的坐標(biāo)為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(理)已知向量
同時垂直于不共線向量
和
,若向量
=2+,則( )
A、∥ |
B、⊥ |
C、與既不平行也不垂直 |
D、以上三種情況均有可能 |
查看答案和解析>>