已知a,b∈R,則“b≥0”是“a2+b≥0”的( 。
A、充分不必要條件B、必要不充分條件C、充分必要條件D、既不充分也不必要條件
分析:根據(jù)不等式的性質(zhì),利用充分條件和必要條件的定義進行判斷.
解答:解:當b≥0時,a2+b≥0成立.
當a=3,b=-1時,滿足a2+b≥0成立,但b≥0不成立.
∴“b≥0”是“a2+b≥0”充分不必要條件.
故選:A.
點評:本題主要考查充分條件和必要條件的判斷,利用不等式的性質(zhì)是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

7、給出下列四個結論:
①命題“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
②給出四個函數(shù)y=x-1,y=x,y=x2,y=x3,則在R上是增函數(shù)的函數(shù)有3個;
③已知a,b∈R,則“等式|a+b|=|a|+|b|成立”的充要條件是“ab≥0”;
④若復數(shù)z=(m2+2m-3)+(m-1)i是純虛數(shù),則實數(shù)m的值為-3或1.
其中正確的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b∈R,則使|a|+|b|≥1成立的一個充分不必要條件是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個結論中,正確的是
(1),(3),(5)
(1),(3),(5)

(1)若A是B的必要不充分條件,則非B也是非A的必要不充分條件.
(2)已知a,b∈R,則“|a+b|=|a|+|b|”的充要條件為“ab>0”
(3)
a>0
△=b2-4ac≤0
是“一元二次不等式ax2+bx+c≥0的解集為R的充要條件.”
(4)“x≠1”是“x2≠1”的充分不必要條件.
(5)“x≠0”是“x+|x|>0”的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b∈R,則“l(fā)og3a>log3b”是“(
1
2
)a<(
1
2
)b
”的(  )條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b∈R+,則
ab
a+b
2
,
a2+b2
2
,
2ab
a+b
的大小順序是(  )

查看答案和解析>>

同步練習冊答案