【題目】已知,

1)求處的切線方程以及的單調(diào)性;

2)對(duì),有恒成立,求的最大整數(shù)解;

3)令,若有兩個(gè)零點(diǎn)分別為,的唯一的極值點(diǎn),求證:.

【答案】(1)切線方程為;單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為(2)的最大整數(shù)解為(3)證明見解析

【解析】

1)求出函數(shù)的導(dǎo)數(shù),求出,即可得到切線方程,解得到單調(diào)遞增區(qū)間,解得到單調(diào)遞減區(qū)間,需注意在定義域范圍內(nèi);

2等價(jià)于,求導(dǎo)分析的單調(diào)性,即可求出的最大整數(shù)解;

3)由,求出導(dǎo)函數(shù)分析其極值點(diǎn)與單調(diào)性,構(gòu)造函數(shù)即可證明;

解:(1

所以定義域?yàn)?/span>

;

;

所以切線方程為

,

解得

解得

所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

2等價(jià)于;

,

,所以上的遞增函數(shù),

,,所以,使得

所以上遞減,在上遞增,

;

所以的最大整數(shù)解為.

3,

當(dāng),;

所以上單調(diào)遞減,上單調(diào)遞增,

而要使有兩個(gè)零點(diǎn),要滿足,

;

因?yàn)?/span>,,令,

,

即:,

而要證,

只需證,

即證:

即:只需證:,

,則

,則

上遞增,;

上遞增,;

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司準(zhǔn)備上市一款新型轎車零配件,上市之前擬在其一個(gè)下屬4S店進(jìn)行連續(xù)30天的試銷.定價(jià)為1000/.試銷結(jié)束后統(tǒng)計(jì)得到該4S店這30天內(nèi)的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

40

60

80

100

頻數(shù)

9

12

6

3

1)若該4S店試銷期間每個(gè)零件的進(jìn)價(jià)為650/件,求試銷連續(xù)30天中該零件日銷售總利潤(rùn)不低于24500元的頻率;

2)試銷結(jié)束后,這款零件正式上市,每個(gè)定價(jià)仍為1000元,但生產(chǎn)公司對(duì)該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價(jià)為550/件;小箱每箱有45件,批發(fā)價(jià)為600/.4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當(dāng)天沒(méi)銷售出的零件按批發(fā)價(jià)的9折轉(zhuǎn)給該公司的另一下屬4S.假設(shè)該4店試銷后的連續(xù)30天的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

50

70

90

110

頻數(shù)

5

15

8

2

(ⅰ)設(shè)該4S店試銷結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤(rùn);

(ⅱ)以總利潤(rùn)作為決策依據(jù),該4S店試銷結(jié)束后連續(xù)30天每天應(yīng)該批發(fā)兩大箱還是兩小箱?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),,,.

求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)已知過(guò)原點(diǎn)的動(dòng)直線與圓 相交于不同的兩點(diǎn),

1)求圓的圓心坐標(biāo);

2)求線段的中點(diǎn)的軌跡的方程;

3)是否存在實(shí)數(shù),使得直線 與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱柱ABCA1B1C1的側(cè)棱垂直于底面,各頂點(diǎn)都在同一球面上,若該棱柱的體積為,AB2,AC1,∠BAC60°,則此球的表面積等于(

A.B.C.10πD.11π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求曲線與曲線的公切線的方程;

2)設(shè)函數(shù)的兩個(gè)極值點(diǎn)為,求證:關(guān)于的方程有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)當(dāng)時(shí),對(duì)任意的,都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁、戊5個(gè)文藝節(jié)目在三家電視臺(tái)播放,要求每個(gè)文藝節(jié)目只能獨(dú)家播放,每家電視臺(tái)至少播放其中的一個(gè),則不同的播放方案的種數(shù)為(

A.150B.210C.240D.280

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報(bào)名,其中報(bào)名的醫(yī)生18人,護(hù)士12人,醫(yī)技6人,根據(jù)需要,從中抽取一個(gè)容量為n的樣本參加救援隊(duì),若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當(dāng)抽取n+1人時(shí),若采用系統(tǒng)抽樣,則需剔除1個(gè)報(bào)名人員,則抽取的救援人員為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案