滿足條件|z+i|+|z-i|=4的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)的軌跡是( 。
A、一條直線B、兩條直線
C、圓D、橢圓
考點(diǎn):軌跡方程
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:轉(zhuǎn)化復(fù)數(shù)方程為復(fù)平面點(diǎn)的幾何意義,然后判斷軌跡即可.
解答: 解:|z+i|+|z-i|=4的幾何意義是:復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)到(0,1)與(0,-1)的距離之和,而且距離之和大于兩點(diǎn)的距離,所以z的軌跡滿足橢圓的定義.
故選:D.
點(diǎn)評(píng):本題考查軌跡方程的求法與軌跡的判斷,橢圓的定義的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin235°-
1
2
sin10°cos10°
=( 。
A、
1
2
B、-
1
2
C、-1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)是偶函數(shù),且當(dāng)x∈[0,+∞)時(shí),f(x)=x-1,則f(x)<0的解集是( 。
A、(-1,0)
B、(-∞,1)
C、[0,1)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二項(xiàng)式(x+
2
x2
)n
的展開(kāi)式中所有項(xiàng)的系數(shù)之和為243,則展開(kāi)式中x-4的系數(shù)是( 。
A、80B、40C、20D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
1
2
x2-2ln(x+1)在其定義域的一個(gè)子區(qū)間(k,k+
1
2
)上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是( 。
A、(
1
2
,+∞)
B、[0,
1
2
C、(
1
2
,1)
D、[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α=
7
8
π,則∠α的終邊所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向如圖所示的方磚上隨機(jī)投擲一粒豆子,則該豆子落在陰影部分的概率是(  ) 
A、
1
8
B、
2
9
C、
7
9
D、
7
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,游樂(lè)場(chǎng)所的摩天輪逆時(shí)針勻速旋轉(zhuǎn),每轉(zhuǎn)一周需要12min,其中心O離地面45米,半徑40米.如果你從最低處登上摩天輪,那么你與地面的距離y與時(shí)間t(min)滿足y=B+Acos(ωt+ψ),以你登上摩天輪的時(shí)刻開(kāi)始計(jì)時(shí),請(qǐng)回答下列問(wèn)題:
(1)求出你與地面的距離y和時(shí)間t(min)的函數(shù)關(guān)系式;
(2)當(dāng)你登上摩天輪2分鐘后,你的朋友也在摩天輪的最低處登上摩天輪,問(wèn)你的朋友登上摩天輪多少時(shí)間后,第一次出現(xiàn)你和你的朋友與地面的距離之差最大?求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|2x-1|-|2x+1|,判斷并證明f(x)的奇偶性.

查看答案和解析>>

同步練習(xí)冊(cè)答案