12.${4^{\frac{1}{2}}}+{log_3}$9=4.

分析 利用指數(shù)與對數(shù)的運算性質(zhì)即可得出.

解答 解:原式=2+$lo{g}_{3}{3}^{2}$=2+2=4.
故答案為:4.

點評 本題考查了指數(shù)與對數(shù)的運算性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)$f(x)={log_2}\frac{{2({1+x})}}{x-1}$,若f(a)=2,則f(-a)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖建立空間直角坐標(biāo)系,已知正方體的棱長為2.
(1)求正方體各頂點的坐標(biāo);
(2)求A1C的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(0,$\sqrt{3}$),離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)求過點(1,0)且斜率為1的直線被橢圓C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$與拋物線y2=8x有一個公共的焦點F,且兩曲線的一個交點為P,若|PF|=4,則雙曲線的離心率為( 。
A.$\sqrt{2}+1$B.$2({\sqrt{2}+1})$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,ABCD是邊長2的菱形,其中∠DAB=60°,ED垂直平面ABCD,ED=1,EF∥BD且2EF=BD.
(1)求證:平面EAC⊥垂直平面BDEF;
(2)求幾何體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.閱讀如圖的程序框圖,若輸入的a、b、c分別是20、32、77,則輸出的a、b、c分別是( 。
A.20、32、77B.77、20、32C.32、20、77D.77、32、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正四面體P-ABC的棱長為2,若M,N分別是PA,BC的中點,則三棱錐P-BMN的體積為$\frac{\sqrt{2}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知一幾何體的三視圖如圖所示,俯視圖由一個直角三角形與一個半圓組成,則該幾何體的體積為(  )
A.4π+8B.4π+12C.8π+8D.8π+12

查看答案和解析>>

同步練習(xí)冊答案