7.如圖,在四面體ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,CE⊥BD于E
(Ⅰ) 求證:BD⊥AC;
(Ⅱ)若平面ABD⊥平面CBD,且BD=$\frac{5}{2}$,求二面角C-AD-B的余弦值.

分析 (I)利用△ABE≌△CBE得出AE⊥BD,結(jié)合CE⊥BD得出BD⊥平面ACE,故而BD⊥AC;
(II)過E作EF⊥AD于F,連接CF,則可證明AD⊥平面CEF,故而∠CFE為所求二面角的平面角,利用勾股定理計(jì)算出EF,CF即可得出cos∠CFE.

解答 (I)證明:連接AE,
∵AB=BC,∠ABD=∠CBD,BE是公共邊,
∴△ABE≌△CBE,
∴∠AEB=∠CEB,
∵CE⊥BD,∴AE⊥BD,
又AE?平面ACE,CE?平面ACE,AE∩CE=E,
∴BD⊥平面ACE,
又AC?平面ACE,
∴BD⊥AC.
(2)解:過E作EF⊥AD于F,連接CF,
∵平面ABD⊥平面BCD,CE?平面BCD,平面ABD∩平面BCD=BD,CE⊥BD,
∴CE⊥平面ABD,又AD?平面ABD,
∴CE⊥AD,又AD⊥EF,
∴AD⊥平面CEF,
∴∠CFE為二面角C-AD-B的平面角,
∵AB=BC=2,∠ABD=∠CBD=60°,AE⊥BD,CE⊥BD,
∴BE=1,AE=CE=$\sqrt{3}$,DE=$\frac{3}{2}$,
∴AD=$\sqrt{A{E}^{2}+D{E}^{2}}$=$\frac{\sqrt{21}}{2}$,EF=$\frac{AE•DE}{AD}$=$\frac{3\sqrt{7}}{7}$,CF=$\sqrt{E{F}^{2}+C{E}^{2}}$=$\frac{\sqrt{210}}{7}$,
∴cos∠CFE=$\frac{EF}{CF}$=$\frac{\sqrt{30}}{10}$.
∴二面角C-AD-B的余弦值為$\frac{\sqrt{30}}{10}$.

點(diǎn)評(píng) 本題考查了線面垂直的判定與性質(zhì),空間角的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線的左、右焦點(diǎn)分別是F1,F(xiàn)2,過F2的直線交雙曲線的右支于P,Q兩點(diǎn),若|PF2|=|F1F2|,且|QF2|=2|PF2|,則該雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{7}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.四棱錐P-ABCD中,底面ABCD為直角梯形,AB⊥AD,BC∥AD,且AB=BC=2,AD=3,PA⊥平面ABCD且PA=2,則PB與平面PCD所成角的正弦值為( 。
A.$\frac{\sqrt{42}}{7}$B.$\frac{\sqrt{7}}{7}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.當(dāng)x>0時(shí),f(x)=$\frac{12}{x}$+4x的最小值為( 。
A.8$\sqrt{3}$B.8C.16D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,在棱長(zhǎng)為a的正方體ABCD-A′B′C′D′中,M、N分別是棱A′B′、B′C′的中點(diǎn),P是棱AD上一點(diǎn),AP=$\frac{a}{3}$,過P、M、N的平面與棱CD交于Q,則PQ的長(zhǎng)度為$\frac{2\sqrt{\sqrt{2}}}{3}$a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,多面體ABCDEF中,已知ABCD是邊長(zhǎng)為3的正方形,△FBC中BC邊上的高為FH,EF⊥FH,EF∥AB,
(1)求證:平面FBC⊥平面ABCD;
(2)若FH=2,EF=$\frac{3}{2}$,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知由實(shí)數(shù)組成的等比數(shù)列{an}的前項(xiàng)和為Sn,且滿足8a4=a7,S7=254.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)n∈N*,bn=$\frac{2n+1}{(log{{\;}_{2}a}_{n})^{2}•(log{{\;}_{2}a}_{n+1})^{2}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.對(duì)變量x,y有觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點(diǎn)圖(1);對(duì)變量u,v,有觀測(cè)數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖(2),由這兩個(gè)散點(diǎn)圖可以判斷(  )
A.變量x與y正相關(guān),u與v正相關(guān)B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn.,且${S_n}={n^2}-2n$.
(Ⅰ)求{an}通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=n•{2^{{a_n}+1}}$,求數(shù)列{bn}前n項(xiàng)的和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案