【題目】下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線(xiàn)圖.

為了預(yù)測(cè)該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線(xiàn)性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②

(1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值;

(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說(shuō)明理由.

【答案】(1)利用模型①預(yù)測(cè)值為226.1,利用模型②預(yù)測(cè)值為256.5,(2)利用模型②得到的預(yù)測(cè)值更可靠.

【解析】分析:(1)兩個(gè)回歸直線(xiàn)方程中無(wú)參數(shù),所以分別求自變量為2018時(shí)所對(duì)應(yīng)的函數(shù)值,就得結(jié)果,(2)根據(jù)折線(xiàn)圖知2000到2009,與2010到2016是兩個(gè)有明顯區(qū)別的直線(xiàn),且2010到2016的增幅明顯高于2000到2009,也高于模型1的增幅,因此所以用模型2更能較好得到2018的預(yù)測(cè).

詳解:(1)利用模型①,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值為

=–30.4+13.5×19=226.1(億元).

利用模型②,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值為

=99+17.5×9=256.5(億元).

(2)利用模型②得到的預(yù)測(cè)值更可靠.

理由如下:

(i)從折線(xiàn)圖可以看出,2000年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)沒(méi)有隨機(jī)散布在直線(xiàn)y=–30.4+13.5t上下,這說(shuō)明利用2000年至2016年的數(shù)據(jù)建立的線(xiàn)性模型①不能很好地描述環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì).2010年相對(duì)2009年的環(huán)境基礎(chǔ)設(shè)施投資額有明顯增加,2010年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)位于一條直線(xiàn)的附近,這說(shuō)明從2010年開(kāi)始環(huán)境基礎(chǔ)設(shè)施投資額的變化規(guī)律呈線(xiàn)性增長(zhǎng)趨勢(shì),利用2010年至2016年的數(shù)據(jù)建立的線(xiàn)性模型=99+17.5t可以較好地描述2010年以后的環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì),因此利用模型②得到的預(yù)測(cè)值更可靠.

(ii)從計(jì)算結(jié)果看,相對(duì)于2016年的環(huán)境基礎(chǔ)設(shè)施投資額220億元,由模型①得到的預(yù)測(cè)值226.1億元的增幅明顯偏低,而利用模型②得到的預(yù)測(cè)值的增幅比較合理,說(shuō)明利用模型②得到的預(yù)測(cè)值更可靠.

以上給出了2種理由,考生答出其中任意一種或其他合理理由均可得分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一條直線(xiàn)與一個(gè)平面垂直,則稱(chēng)此直線(xiàn)與平面構(gòu)成一個(gè)“正交線(xiàn)面對(duì)”.那么在一個(gè)正方體中,由兩個(gè)頂點(diǎn)確定的直線(xiàn)與含有四個(gè)頂點(diǎn)的平面構(gòu)成的“正交線(xiàn)面對(duì)”的個(gè)數(shù)是( )

A. 48 B. 36 C. 24 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐(如圖1)的平面展開(kāi)圖(如圖2)中,四邊形為邊長(zhǎng)等于的正方形,均為正三角形,在三棱錐中:

1)證明:平面平面;

2)若點(diǎn)在棱上運(yùn)動(dòng),當(dāng)直線(xiàn)與平面所成的角最大時(shí),求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,MN分別是BC,BB1,A1D的中點(diǎn).

1)證明:MN∥平面C1DE

2)求AM與平面A1MD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)的直線(xiàn)的參數(shù)方程是為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)若直線(xiàn)與曲線(xiàn)交于兩點(diǎn),試問(wèn)是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),設(shè)函數(shù),若函數(shù)上恰有兩個(gè)不同的零點(diǎn),則的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn),這5部專(zhuān)著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期,某中學(xué)擬從這5部專(zhuān)著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)在高二下學(xué)期開(kāi)設(shè)四門(mén)數(shù)學(xué)選修課,分別為《數(shù)學(xué)史選講》.《球面上的幾何》.《對(duì)稱(chēng)與群》.《矩陣與變換》.現(xiàn)有甲.乙.丙.丁四位同學(xué)從這四門(mén)選修課程中選修一門(mén),且這四位同學(xué)選修的課程互不相同,下面關(guān)于他們選課的一些信息:①甲同學(xué)和丙同學(xué)均不選《球面上的幾何》,也不選《對(duì)稱(chēng)與群》:②乙同學(xué)不選《對(duì)稱(chēng)與群》,也不選《數(shù)學(xué)史選講》:③如果甲同學(xué)不選《數(shù)學(xué)史選講》,那么丁同學(xué)就不選《對(duì)稱(chēng)與群》.若這些信息都是正確的,則丙同學(xué)選修的課程是( 。

A. 《數(shù)學(xué)史選講》B. 《球面上的幾何》C. 《對(duì)稱(chēng)與群》D. 《矩陣與變換》

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠(chǎng)家為了了解某新產(chǎn)品使用者的年齡情況,現(xiàn)隨機(jī)調(diào)査100 位使用者的年齡整理后畫(huà)出的頻率分布直方圖如圖所示.

(1)求100名使用者中各年齡組的人數(shù),并利用所給的頻率分布直方圖估計(jì)所有使用者的平均年齡;

(2)若已從年齡在的使用者中利用分層抽樣選取了6人,再?gòu)倪@6人中選出2人,求這2人在不同的年齡組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案