【題目】已知奇函數(shù).

1)求實數(shù)的值,并畫出函數(shù)的圖象;

2)若函數(shù)在區(qū)間上是增函數(shù),結合函數(shù)的圖象,求實數(shù)的取值范圍;

3)結合圖象,求函數(shù)在區(qū)間上的最大值和最小值.

【答案】(1) m=2. (2) (1,3].(3)最大值是1,最小值是-1.

【解析】

試題(1)根據(jù)奇函數(shù)定義得f(-x)=-f(x)代入可得m=2通過描點可得函數(shù)f(x)的圖象;(2)根據(jù)圖像可得[-1,a-2]為[-1,1]一個子集,結合數(shù)軸可得實數(shù)a滿足的條件,解不等式可得a的取值范圍(3)根據(jù)圖像可得最高點與最低點,對應求出最大值和最小值.

試題解析:解:(1)當x<0時,-x>0,

f(-x)=-(-x)2+2(-x)=-x2-2x.

又∵函數(shù)f(x)為奇函數(shù),

f(-x)=-f(x).

f(x)=-f(-x)=-(-x2-2x)=x2+2x.

又∵當x<0時,f(x)=x2mx,

∵對任意x<0,總有x2+2xx2mx,∴m=2.

函數(shù)f(x)的圖象如圖所示.

(2)由(1)知f(x)=

由圖象可知,函數(shù)f(x)的圖象在區(qū)間[-1,1]上的圖象是“上升的”,

∴函數(shù)f(x)在區(qū)間[-1,1]上是增函數(shù).

要使f(x)在[-1,a-2]上是增函數(shù),

需有解得1<a≤3,

即實數(shù)a的取值范圍是(1,3].

(3)由圖象可知,函數(shù)f(x)的圖象在區(qū)間[-2,2]上的最高點是(1,f(1)),最低點是(-1,f(-1)).

又因為f(1)=-1+2=1,f(-1)=1-2=-1,所以函數(shù)f(x)在區(qū)間[-2,2]上的最大值是1,最小值是-1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,底面是梯形,ABCD,,AB=PD=4,CD=2,,MCD的中點,NPB上一點,且.

(1)若MN∥平面PAD

(2)若直線AN與平面PBC所成角的正弦值為,求異面直線AD與直線CN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中,,,四邊形

為矩形,平面平面,.

I)求證:平面;

II)點在線段上運動,設平面與平面所成二面角的平面角為,

試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,且兩焦點與短軸的一個頂點的連線構成等腰直角三角形.

Ⅰ)求橢圓的方程;

Ⅱ)過的直線交橢圓于,兩點,試問:是否存在一個定點,使得以為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)將甲、乙、丙、丁四個人安排到座位號分別是的四個座位上,他們分別有以下要求,

甲:我不坐座位號為的座位;

乙:我不坐座位號為的座位;

丙:我的要求和乙一樣;

丁:如果乙不坐座位號為的座位,我就不坐座位號為的座位.

那么坐在座位號為的座位上的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假定生男孩和生女孩是等可能的,令{一個家庭中既有男孩又有女孩},{一個家庭中最多有一個女孩}.對下述兩種情形,討論的獨立性.

1)家庭中有兩個小孩;

2)家庭中有三個小孩.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某中學聯(lián)盟舉行了一次盟校質量調研考試活動,為了解本次考試學生的某學科成績情況,從中抽取部分學生的分數(shù)(滿分為分,得分取正整數(shù),抽取學生的分數(shù)均在之內)作為樣本(樣本容量為)進行統(tǒng)計,按照的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(莖葉圖中僅列出了得分在的數(shù)據(jù))

(Ⅰ)求樣本容量和頻率分布直方圖中的的值;

(Ⅱ)在選取的樣本中,從成績在分以上(含分)的學生中隨機抽取名學生參加省級學科基礎知識競賽,求所抽取的名學生中恰有一人得分在內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高爾頓(釘)板是在一塊豎起的木板上釘上一排排互相平行、水平間隔相等的圓柱形鐵釘(如圖),并且每一排釘子數(shù)目都比上一排多一個,一排中各個釘子恰好對準上面一排兩相鄰鐵釘?shù)恼醒?從入口處放入一個直徑略小于兩顆釘子間隔的小球,當小球從兩釘之間的間隙下落時,由于碰到下一排鐵釘,它將以相等的可能性向左或向右落下,接著小球再通過兩鐵釘?shù)拈g隙,又碰到下一排鐵釘.如此繼續(xù)下去,在最底層的5個出口處各放置一個容器接住小球.

(Ⅰ)理論上,小球落入4號容器的概率是多少?

(Ⅱ)一數(shù)學興趣小組取3個小球進行試驗,設其中落入4號容器的小球個數(shù)為,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題擬定出臺“延遲退休年齡政策”.為了了解人們]對“延遲退休年齡政策”的態(tài)度,責成人社部進行調研.人社部從網上年齡在1565歲的人群中隨機調查100人,調査數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結果如下

年齡

支持“延遲退休”的人數(shù)

15

5

15

28

17

(1)由以上統(tǒng)計數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;

45歲以下

45歲以上

總計

支持

不支持

/td>

總計

(2)若以45歲為分界點從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機抽2人

①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率.

②記抽到45歲以上的人數(shù)為,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案