數(shù)列{an}中,對任意n∈N*,a1+a2+…+an=2n-1,則a12+a22+…+an2等于( 。
A、(2n-1)2
B、
(2n-1)2
3
C、4n-1
D、
4n-1
3
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:當n≥2時,由a1+a2+…+an=2n-1可得a1+a2+…+an-1=2n-1-1,因此an=2n-1,當n=1時也成立.再利用等比數(shù)列的前n項和公式可得a12+a22+…+an2
解答: 解:當n≥2時,由a1+a2+…+an=2n-1可得a1+a2+…+an-1=2n-1-1,
∴an=2n-1,當n=1時也成立.
a
2
n
=4n-1
∴a12+a22+…+an2=
4n-1
4-1
=
4n-1
3

故選:D.
點評:本題考查了遞推式的意義、等比數(shù)列的前n項和公式,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設全集U=R,集合A={x|x≤-2或x≥5},B={x|x≤2}.求
(Ⅰ)∁U(A∪B);
(Ⅱ)記∁U(A∪B)=D,C={x|2a-3≤x≤-a},且C∩D=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
x2+a
bx-c
(b,c∈N+).若方程f(x)=x的根為0和2,且f(-2)<-
1
2

(1)求函數(shù)f(x)的解析式;
(2)已知各項均不為零的數(shù)列{an}滿足:4Snf(
1
an
)=1(Sn為該數(shù)列前n項和),求該數(shù)列的通項公式an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某旅游景點經營者欲增加欲增加景點服務設施以提高旅游增加量,經過調研發(fā)現(xiàn),在控制投入成本的前提下,旅游增加值y(萬元)與投入成本x(萬元)之間滿足:y=-ax2+
51
50
x-lnx+ln10(10≤x≤100),其中實數(shù)a為常數(shù),且當投入成本為10萬元時,旅游增加值為9.2萬元.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)當投入成本為多少萬元時,旅游增加值y取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-lnx,若f(x)存在兩個零點,則實數(shù)a的取值范圍是( 。
A、(0,
1
2e
B、(0,1)
C、(-∞,
1
2e
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

歐洲很多國家及美國已經要求禁止在校園出售軟飲料,禁止向中小學生銷售可口可樂等高熱量碳酸飲料,原因是這些飲料被認為是造成兒童 肥胖問題日益嚴重的主要原因之一.為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現(xiàn)對30名六年級學生進行了問卷調查得到列聯(lián)表:平均每天喝500mL以上為常喝,體重超過50kg為肥胖.
常喝不常喝合計
肥胖2
不肥胖18
合計30
已知在全部30人中隨機抽取1人,抽到肥胖的學生的概率為
4
15

(1)請將列聯(lián)表補充完整
(2)是否有99.5%的把握認為肥胖與常喝碳酸飲料有關?說明你的理由
(3)現(xiàn)從常喝碳酸飲料且肥胖的學生中(2名女生),抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少?
參考數(shù)據(jù):
P(K2≥K)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x2+4x+5
+
x2-4x+8
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一條長為2的線段,它的三個視圖分別是長為
3
,a,b的三條線段,則ab的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y=-x2+6x-7的對稱軸方程是直線( 。
A、x=6B、x=3
C、x=-3D、x=-6

查看答案和解析>>

同步練習冊答案