19.函數(shù)y=sinx•cosx的導(dǎo)數(shù)是( 。
A.cosx•sinxB.cos2x+sin2xC.2cosx•sinxD.cos2x-sin2x

分析 根據(jù)導(dǎo)數(shù)的運(yùn)算法則和基本導(dǎo)數(shù)公式即可.

解答 解:y′=cos2x-sin2x,
故選:D

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則和基本導(dǎo)數(shù)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在復(fù)平面上,復(fù)數(shù)z=(-2+i)i5的對(duì)應(yīng)點(diǎn)所在象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,sinA+2sinBcosC=0,$\sqrt{3}$b=c,則tanA的值是(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若{log2an}是首項(xiàng)為1,公差為2的等差數(shù)列,則數(shù)列{nan}的前n項(xiàng)和為$\frac{2+(6n-2)•{4}^{n}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知a,b,c是正實(shí)數(shù),且a+b+c=1,則$\frac{1}{a}+\frac{1}+\frac{1}{c}$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}中,a1=3,且點(diǎn)Pn(an,an+1)(n∈N*)在直線4x-y+1=0上,則數(shù)列{an}的通項(xiàng)公式為an=$\frac{10}{3}•{4}^{n-1}$$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,4a1,2a3,a5成等差數(shù)列,且a1+a3+a5=14,則a1+a3+a5+…+a2n+1=2n+2-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知數(shù)列{an}滿足:a1為正整數(shù),an+1=$\left\{{\begin{array}{l}{\frac{a_n}{2},\;{a_n}為偶數(shù)}\\{3{a_n}+1,{a_n}為奇數(shù)}\end{array}}$,如果a1=5,則a1+a2+a3的值為( 。
A.29B.30C.31D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex-e-x
(Ⅰ)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)當(dāng)x∈(0,1)時(shí),不等式ex-e-x>k(x+$\frac{{x}^{3}}{6}$)恒成立,求實(shí)數(shù)k的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案