2.已知復(fù)數(shù)z滿足|z|-$\overline{z}$=2-4i,則z=3-4i.

分析 設(shè)z=a+bi(a,b∈R),由于復(fù)數(shù)z滿足|z|-$\overline{z}$=2-4i,可得$\sqrt{{a}^{2}+^{2}}$-(a-bi)=2-4i,利用復(fù)數(shù)相等即可得出.

解答 解:設(shè)z=a+bi(a,b∈R),
∵復(fù)數(shù)z滿足|z|-$\overline{z}$=2-4i,
∴$\sqrt{{a}^{2}+^{2}}$-(a-bi)=2-4i,
∴$\left\{\begin{array}{l}{\sqrt{{a}^{2}+^{2}}-(a-bi)=2-4i}\\{b=-4}\end{array}\right.$,解得b=-4,a=3.
∴z=3-4i.
故答案為:3-4i.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算性質(zhì)、復(fù)數(shù)模的計(jì)算公式、復(fù)數(shù)相等,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某種放射性物質(zhì),每經(jīng)過一年平均減少6.2%,求5年后1克這樣的物質(zhì)還剩0.726克?(精確到0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下面幾種推理過程是演繹推理的是( 。
A.由平面三角形的性質(zhì)推測空間三棱錐的性質(zhì)
B.所有的金屬都能夠?qū)щ姡櫴墙饘,所以鈾能夠(qū)щ?/td>
C.高一參加軍訓(xùn)有12個(gè)班,1班51人,2班53人,三班52人,由此推測各班都超過50人
D.在數(shù)列{an}中,a1=2,an=2an-1+1(n≥2),由此歸納出{an}的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若x,y滿足$\left\{\begin{array}{l}{x≤2}\\{x-y+1≥0}\\{x+y-2≥0}\end{array}\right.$.則z=2x-y的最小值為( 。
A.4B.1C.0D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}滿足an+1=2an+3•2n,a1=2,則數(shù)列{an}的通項(xiàng)公式是(3n-1)•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N)
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)當(dāng)n≥2,n∈N時(shí),不等式an+1+an+2+…+a2n$>\frac{12}{35}$(log3m-log2m+1)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某學(xué)院的A,B,C三個(gè)專業(yè)共有1500名學(xué)生,為了調(diào)查這些學(xué)生勤工儉學(xué)的情況,擬采用分層抽樣的方法抽取一個(gè)容量為150的樣本.已知該學(xué)院的A專業(yè)有420名學(xué)生,B專業(yè)有580名學(xué)生,則在該學(xué)院的C專業(yè)應(yīng)抽取50名學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知一組數(shù)據(jù)按從小到大的順序排列為:14,19,x,23,27,其中中位數(shù)是22,則x的值為( 。
A.24B.23C.22D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)y=f(x)在x=x0處可導(dǎo),則$\underset{lim}{h→∞}\frac{f({x}_{0}+h)-f({x}_{0}-h)}{h}$等于(  )
A.f′(x0B.2f′(x0C.-2f′(x0D.0

查看答案和解析>>

同步練習(xí)冊答案