精英家教網 > 高中數學 > 題目詳情
12.已知等差數列{an}滿足:$\frac{{{a_{11}}}}{{{a_{10}}}}<-1$,且它的前n項和Sn有最大值,則當Sn取到最小正值時,n=19.

分析 根據題意判斷出d<0、a10>0>a11、a10+a11<0,利用前n項和公式和性質判斷出S20<0、S19>0,再利用數列的單調性判斷出當Sn取的最小正值時n的值.

解答 解:由題意知,Sn有最大值,所以d<0,
由$\frac{{{a_{11}}}}{{{a_{10}}}}<-1$,所以a10>0>a11
且a10+a11<0,
所以S20=10(a1+a20)=10(a10+a11)<0,
則S19=19a10>0,
又a1>a2>…>a10>0>a11>a12
所以S10>S9>…>S2>S1>0,S10>S11>…>S19>0>S20>S21
又S19-S1=a2+a3+…+a19=9(a10+a11)<0,
所以S19為最小正值.
故答案為:10.

點評 本題考查了等差數列的性質、前n項和公式以及Sn最值問題,要求Sn取得最小正值時n的值,關鍵是要找出什么時候an+1小于0且an大于0.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

2.已知鈍角α滿足cosα=-$\frac{3}{5}$,則tan(α+$\frac{π}{4}$)的值為$-\frac{1}{7}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.過圓(x-1)2+y2=1外一點(3,0)作圓的切線,則切線的長為$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.設函數f(x)=(x2-8x+c1)(x2-8x+c2)(x2-8x+c3)(x2-8x+c4),集合M={x|f(x)=0}={x1,x2,x3,…,x7}⊆N*,設c1≥c2≥c3≥c4則c1-c4=( 。
A.11B.13C.7D.9

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知指數函數y=g(x)滿足:g(3)=8,定義域為R的函數f(x)=$\frac{n-g(x)}{2+2g(x)}$是奇函數.
(1)確定y=f(x)和y=g(x)的解析式;
(2)若對任意的x∈[1,4],不等式f(2x-3)+f(x-k)>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.集合S={-2,0,2,4},T={-2,2,4},則下列選項中正確的是( 。
A.T⊆SB.T∈SC.S∩T={-2,2,4}D.S∪T={-2,0,4}

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.函數f(x)=x2-2(a-1)x+2在區(qū)間[-1,4]上為單調函數,則a的取值范圍是(-∞,0]∪[5,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.f(x)是奇函數,當x≥0時,f(x)=2x(1-x),則$f(-\frac{1}{2})$=(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.離心率為$\frac{3}{4}$的橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),P∈C,且P到橢圓的兩個焦點距離之和為8則橢圓C的方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{7}=1$.

查看答案和解析>>

同步練習冊答案