7.已知指數(shù)函數(shù)y=g(x)滿(mǎn)足:g(3)=8,定義域?yàn)镽的函數(shù)f(x)=$\frac{n-g(x)}{2+2g(x)}$是奇函數(shù).
(1)確定y=f(x)和y=g(x)的解析式;
(2)若對(duì)任意的x∈[1,4],不等式f(2x-3)+f(x-k)>0恒成立,求k的取值范圍.

分析 (1)設(shè)g(x)=ax(a>0且a≠1),由a3=8解得a=2.故g(x)=2x.再根據(jù)函數(shù)是奇函數(shù),求出n的值,得到f(x)的解析式;
(2)根據(jù)函數(shù)為奇函數(shù)和減函數(shù),轉(zhuǎn)化為即對(duì)一切x∈(1,4),有3tx-3<k恒成立,再利用函數(shù)的單調(diào)性求出函數(shù)的最值即可.

解答 解::(1)設(shè)g(x)=ax(a>0且a≠1),
∵g(3)=8,∴a3=8,解得a=2.∴g(x)=2x.∴f(x)=$\frac{n-{2}^{x}}{2+2•{2}^{x}}$,
∵函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),∴f(0)=0,∴n=1,∴f(x)=$\frac{1-{2}^{x}}{2+{2}^{x+1}}$,(x∈R);
(2)由(Ⅰ)知f(x)=$-\frac{1}{2}•\frac{{2}^{x}-1}{{2}^{x}+1}=-\frac{1}{2}+\frac{1}{{2}^{x}+1}$,易知f(x)在R上為減函數(shù),
又f(x)是奇函數(shù),∴f(2x-3)+f(x-k)>0,∴f(2x-3)>-f(x-k)=f(k-x),
∵f(x)在R上為減函數(shù),由上式得2x-3<k-x,
即對(duì)一切x∈(1,4),有3x-3<k恒成立,
令m(x)=3x-3,x∈(1,4),
易知m(x)在(1,4)上遞增,∴m(x)<3×4-3=9,
∴k≥9,即實(shí)數(shù)k的取值范圍是[9,+∞).

點(diǎn)評(píng) 本題綜合考查了指數(shù)函數(shù)的定義及其性質(zhì)、函數(shù)的奇偶性、單調(diào)性、恒成立問(wèn)題的等價(jià)轉(zhuǎn)化、屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.不透明的箱子里裝有出顏色外其他均相同的編號(hào)為a1,a2,a3的3個(gè)白球和編號(hào)為b1,b2的2個(gè)黑球,從中任意摸出2個(gè)球.
(1)寫(xiě)出所有不同的結(jié)果;
(2)求恰好摸出1個(gè)白球和1個(gè)黑球的概率;
(3)求至少摸出一個(gè)白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,AC1是正方體ABCD-A1B1C1D1的對(duì)角線(xiàn).
(1)求證:平面A1BD∥平面CD1B1;
(2)求證:直線(xiàn)AC1⊥直線(xiàn)BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=Asin(ωx-$\frac{π}{6}$)+1(A>0,ω>0)的最大值為3,其圖象的相鄰兩條對(duì)稱(chēng)軸之間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)對(duì)稱(chēng)中心的坐標(biāo);
(2)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若集合A={x|2x+1>0},B={x|2x-1<2},則A∩B={x|$\frac{1}{2}$<x<$\frac{3}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知等差數(shù)列{an}滿(mǎn)足:$\frac{{{a_{11}}}}{{{a_{10}}}}<-1$,且它的前n項(xiàng)和Sn有最大值,則當(dāng)Sn取到最小正值時(shí),n=19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,已知點(diǎn)P是圓O外一點(diǎn),過(guò)P做圓O的切線(xiàn)PA,PB,切點(diǎn)分別為A,B,過(guò)P做一條割線(xiàn)交圓O于E,F(xiàn),若2PA=PF,取PF的中點(diǎn)D,連接AD,并延長(zhǎng)交圓于H.
(1)求證:四點(diǎn)O,A,P,B共圓;
(2)求證:PB2=2ED×DF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若奇函數(shù)f(x)在[1,3]上是增函數(shù),且最小值是1,則它在[-3,-1]上是(  )
A.增函數(shù),最小值-1B.增函數(shù),最大值-1C.減函數(shù),最小值-1D.減函數(shù),最大值-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知拋物線(xiàn)y2=8x的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,點(diǎn)P為拋物線(xiàn)上一點(diǎn),且在第一象限,PA⊥l,垂足為A,|PF|=4,則直線(xiàn)AF傾斜角為135°.

查看答案和解析>>

同步練習(xí)冊(cè)答案