分析 (1)設(shè)g(x)=ax(a>0且a≠1),由a3=8解得a=2.故g(x)=2x.再根據(jù)函數(shù)是奇函數(shù),求出n的值,得到f(x)的解析式;
(2)根據(jù)函數(shù)為奇函數(shù)和減函數(shù),轉(zhuǎn)化為即對(duì)一切x∈(1,4),有3tx-3<k恒成立,再利用函數(shù)的單調(diào)性求出函數(shù)的最值即可.
解答 解::(1)設(shè)g(x)=ax(a>0且a≠1),
∵g(3)=8,∴a3=8,解得a=2.∴g(x)=2x.∴f(x)=$\frac{n-{2}^{x}}{2+2•{2}^{x}}$,
∵函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),∴f(0)=0,∴n=1,∴f(x)=$\frac{1-{2}^{x}}{2+{2}^{x+1}}$,(x∈R);
(2)由(Ⅰ)知f(x)=$-\frac{1}{2}•\frac{{2}^{x}-1}{{2}^{x}+1}=-\frac{1}{2}+\frac{1}{{2}^{x}+1}$,易知f(x)在R上為減函數(shù),
又f(x)是奇函數(shù),∴f(2x-3)+f(x-k)>0,∴f(2x-3)>-f(x-k)=f(k-x),
∵f(x)在R上為減函數(shù),由上式得2x-3<k-x,
即對(duì)一切x∈(1,4),有3x-3<k恒成立,
令m(x)=3x-3,x∈(1,4),
易知m(x)在(1,4)上遞增,∴m(x)<3×4-3=9,
∴k≥9,即實(shí)數(shù)k的取值范圍是[9,+∞).
點(diǎn)評(píng) 本題綜合考查了指數(shù)函數(shù)的定義及其性質(zhì)、函數(shù)的奇偶性、單調(diào)性、恒成立問(wèn)題的等價(jià)轉(zhuǎn)化、屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 增函數(shù),最小值-1 | B. | 增函數(shù),最大值-1 | C. | 減函數(shù),最小值-1 | D. | 減函數(shù),最大值-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com