在△ABC中 a=2,b=3,cosB=
,則sinA的值為
.
考點(diǎn):余弦定理
專題:解三角形
分析:由cosB的值求出sinB的值,再由a與b的值,利用正弦定理即可求出sinA的值.
解答:
解:∵cosB=
,B為三角形的內(nèi)角,
∴sinB=
=
,
∵a=2,b=3,
∴由正弦定理
=
得:sinA=
=
=
.
故答案為:
點(diǎn)評(píng):此題考查了正弦定理,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
二項(xiàng)式(3
+
)
n的展開式中的各項(xiàng)系數(shù)和為P,所有二項(xiàng)式系數(shù)和為Q,若P+Q=272,求展開式中的常數(shù)項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖所示,函數(shù)y=2sin(ωx+ϕ)(x∈R,ω>0,0≤ϕ≤
)的圖象與y軸交于點(diǎn)(0,
),且該函數(shù)的最小正周期為π.
(1)求ω和ϕ的值;
(2)已知點(diǎn)A(
,0),點(diǎn)P是該函數(shù)圖象上一點(diǎn),點(diǎn)Q(x
0,y
0)是PA的中點(diǎn),當(dāng)y
0=
,x0∈[,π]時(shí),求x
0的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
數(shù)列{a
n}的各項(xiàng)均為正數(shù),S
n為其前n項(xiàng)和,對(duì)于任意n∈N
*,總有2S
n=a
n2+a
n.
(1)求數(shù)列{a
n}的通項(xiàng)公式;
(2)求數(shù)列
{an()n}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
解關(guān)于x的不等式:ax-8>a-2x+1.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
直線3x-4y-4=0被圓(x-3)
2+y
2=9截得的弦長(zhǎng)為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)f(x)=2x2-3x(-1≤x≤2)的值域?yàn)?div id="esfxzre" class='quizPutTag' contenteditable='true'>
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知雙曲線
-
=1上一點(diǎn)M到右焦點(diǎn)F的距離為11,N為線段MF的中點(diǎn),O為坐標(biāo)原點(diǎn),則|ON|=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=(
+
)
2,(x≥0),又?jǐn)?shù)列{a
n}中a
1=2,其前n項(xiàng)和為S
n,(n∈N
*),對(duì)所有大于1的自然數(shù)n都有S
n=f(S
n-1),則數(shù)列{a
n}的通項(xiàng)公式
.
查看答案和解析>>